Mechanism of interruption of atrial flutter by moricizine. Electrophysiological and multiplexing studies in the canine sterile pericarditis model of atrial flutter.

Author:

Ortiz J1,Nozaki A1,Shimizu A1,Khrestian C1,Rudy Y1,Waldo A L1

Affiliation:

1. Department of Medicine, Case Western Reserve University, University Hospitals of Cleveland, Ohio 44106.

Abstract

BACKGROUND Moricizine is said to have potent effects on cardiac conduction but little or no effect on cardiac refractoriness. METHODS AND RESULTS The effects of moricizine (2 mg/kg IV) on induced atrial flutter were studied 2 to 4 days after the creation of sterile pericarditis in 11 dogs. Ten episodes of stable atrial flutter before and after the administration of moricizine were studied in 9 dogs in the conscious, nonsedated state, and 7 episodes were studied in 6 dogs in the anesthetized, open chest state. In the conscious state, the effects of moricizine on atrial excitability, atrial effective refractory period, and intra-atrial conduction times were studied by recording during overdrive pacing of sinus rhythm from epicardial electrodes placed at selected atrial sites. Moricizine prolonged the atrial flutter cycle length in all the episodes, from a mean of 133 +/- 9 to 172 +/- 27 milliseconds (P < .001), and then terminated 7 of the 10 episodes. Moricizine increased the atrial threshold of excitability from a mean of 2.3 +/- 1.4 to 3.3 +/- 2.2 mA (P < .01) and prolonged intra-atrial conduction times (measured from the sulcus terminalis to the posteroinferior left atrium) from a mean of 58 +/- 6 to 64 +/- 5 milliseconds (P < .005). Prolongation of the atrial effective refractory period from 166 +/- 20 to 174 +/- 24 milliseconds (P < .05) was observed only at the sulcus terminalis site. In the open chest studies, administration of moricizine prolonged the atrial flutter cycle length from a mean of 150 +/- 15 to 216 +/- 30 milliseconds (P < .001) and then terminated the atrial flutter in all 7 episodes. As demonstrated by simultaneous multisite mapping from 95 bipolar sites on the right atrial free wall, the atrial flutter cycle length prolongation was either due to further slowing of conduction in an area of slow conduction in the reentrant circuit of the atrial flutter (5 episodes) or further slowing of conduction in an area of slow conduction plus the development of a second area of slow conduction (2 episodes). The change in conduction times in the rest of the reentrant circuit was negligible (10.9 +/- 8.7% of the total change). In all 7 episodes, the last circulating reentrant wave front blocked in an area of slow conduction. CONCLUSIONS Moricizine (1) prolongs the atrial flutter cycle length, primarily by slowing conduction in an area of slow conduction in the reentrant circuit, (2) terminates atrial flutter by causing block of the circulating reentrant wave front in an area of slow conduction of the reentrant circuit, and (3) effectively interrupts otherwise stable atrial flutter in this canine model. The reason for these effects of moricizine are not readily explained by its effects on global atrial conduction times and refractoriness studied during sinus rhythm. Local changes in conduction in an area(s) of slow conduction are responsible for both cycle length prolongation and atrial flutter termination rather than the traditional wavelength concept of head-tail interaction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tachycardia Termination by Shocks and Pacing;Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy;2017

2. Termination of Atrial Flutter and Fibrillation by K201ʼs Metabolite M-II;Journal of Cardiovascular Pharmacology;2015-05

3. Ranolazine terminates atrial flutter and fibrillation in a canine model;Heart Rhythm;2014-09

4. Mechanisms of termination and prevention of atrial fibrillation by drug therapy;Pharmacology & Therapeutics;2011-08

5. Vanoxerine, a New Drug for Terminating Atrial Fibrillation and Flutter;Journal of Cardiovascular Electrophysiology;2010-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3