Thromboxane A2 and prostacyclin biosynthesis in children and adolescents with pulmonary vascular disease.

Author:

Adatia I1,Barrow S E1,Stratton P D1,Miall-Allen V M1,Ritter J M1,Haworth S G1

Affiliation:

1. Developmental Vascular Biology and Pharmacology Unit, United Medical School, Guy's Hospital, London, UK.

Abstract

BACKGROUND The pathogenesis of pulmonary vascular disease in children with congenital heart disease is incompletely understood. Thromboxane (TX) A2 and prostacyclin (PGI2) have opposing effects on platelet aggregation and pulmonary vascular smooth muscle. An imbalance in their biosynthesis could contribute to the progressive increase in pulmonary vascular resistance seen in older untreated patients with pulmonary hypertensive congenital heart disease and the thrombotic complications they may develop. METHODS AND RESULTS We investigated TXA2 and PGI2 biosynthesis in 15 young children (0.2 to 2.25 years old) with congenital heart disease with increased pulmonary blood flow and potentially reversible pulmonary vascular disease by measuring urinary excretion of 2,3-dinor-TXB2 and 2,3-dinor-6-oxoprostaglandin (PG) F1 alpha and compared the findings with those in 16 healthy children (0.5 to 2.8 years old). 2,3-Dinor-TXB2 excretion was greater in the patients than in control subjects (1253 +/- 161 versus 592 +/- 122 ng/g creatinine; P < .001). Excretion of 2,3-dinor-6-oxo-PGF1 alpha was 452 +/- 54 compared with 589 +/- 95 ng/g creatinine in control subjects. In 5 patients who underwent successful cardiac surgery > or = 1 year later excretion of 2,3-dinor-TXB2 decreased from 1100 +/- 298 to 609 +/- 131 ng/g creatinine (P < .05), a value comparable to those in 5 healthy children of similar age (749 +/- 226 ng/g creatinine). We also compared 15 patients (11 to 23 years old) with advanced irreversible pulmonary vascular disease with 19 healthy control subjects (10 to 23 years old). The ratio of TX to PGI2 metabolite excretion was greater in the patients than in control subjects (3.5 +/- 0.6 versus 2.0 +/- 0.3; P < .05). CONCLUSIONS There is increased 2,3-dinor-TXB2 excretion in children with congenital heart disease and a high pulmonary blood flow that may reflect an imbalance in biosynthesis of TXA2 and PGI2 in the pulmonary vascular bed. The imbalance may contribute to the progressive development of increased pulmonary vascular resistance and persists in older patients whose heart defects are uncorrected.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference41 articles.

1. Pulmonary artery endothelial abnormalities in patients with congenital heart defects and pulmonary hypertension: a correlation of light with scanning electron microscopy and transmission electron microscopy;Rabinovitch M;Lab Invest.,1986

2. Brigham KL. Mechanisms of endothelial injury. In: Ryan US ed. Pulmonary Endothelium in Health and Disease. New York NY: Marcel Dekker; 1987:207.

3. Bovine endothelial cells in culture produce thromboxane as well as prostacyclin.

4. Prostaglandin Endoperoxides. Novel Transformations of Arachidonic Acid in Human Platelets

5. Hamberg M Svensson J Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Nat! Acad Sci U S A. 1975;72:2994-2998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3