Factors contributing to increased vascular fibrinolytic activity in mongrel dogs.

Author:

Lang I M1,Marsh J J1,Konopka R G1,Olman M A1,Binder B R1,Moser K M1,Schleef R R1

Affiliation:

1. University of California, San Diego.

Abstract

BACKGROUND Numerous investigators have observed that pulmonary emboli are rapidly lysed in a canine model system. This study was undertaken to delineate the unique mechanism that accounts for the rapid dissolution of pulmonary emboli in mongrel dogs. METHODS AND RESULTS Canine plasminogen activator (PA) activity (2.6 +/- 1.1 IU/mL acidified platelet-poor plasma [PPP], < 0.3 IU/mL acidified whole blood serum [WBS], mean +/- SD; n = 6) and PA inhibitor activity (6.1 +/- 2.6 U/mL PPP, 35.4 +/- 7.8 U/mL WBS; n = 6) were determined in standard plasminogen-based chromogenic assays. Analysis of canine PPP, WBS, platelet lysates, and primary canine endothelial cell (EC) cultures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fibrin autography revealed a plasminogen-dependent lytic zone at 45-kd relative molecular mass that was shown to be related to urokinase-type PA (u-PA) by its selective inhibition through amiloride. Analysis of canine platelets on standard 125I fibrin plate assays revealed a net fibrinolytic activity. In a clot lysis assay system, canine platelets were able to stimulate fibrinolysis when layered on the outside of fibrin clots containing autologous PPP. Moreover, net fibrinolytic activity of primary canine pulmonary artery endothelial cells was higher than the activities expressed by canine aortic or carotid artery endothelial cells. CONCLUSIONS Rapid lysis of pulmonary emboli in mongrel dogs appears to be a result of 1) the high u-PA activity in canine PPP and 2) the predominant association of u-PA activity with canine platelets and canine pulmonary artery endothelial cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3