Specific IK1 blockade: a new antiarrhythmic mechanism? Effect of RP58866 on ventricular arrhythmias in rat, rabbit, and primate.

Author:

Rees S A1,Curtis M J1

Affiliation:

1. Department of Pharmacology, King's College, University of London, U.K.

Abstract

BACKGROUND The effectiveness of blockade of the inwardly rectifying K+ current (IK1) in prevention of arrhythmias is unknown. We have examined the antiarrhythmic potential of a new selective IK1 blocker, RP58866, in rat, rabbit, and primate (marmoset) isolated hearts in the settings of acute ischemia and reperfusion. METHODS AND RESULTS In concentration-response studies (n = 12 per group), the drug reduced ischemia-induced ventricular fibrillation (VF) in rat from control incidence of 100 to 50%, 17% (p < 0.05), and 0% (p < 0.05) at 1, 3, and 10 mumol/L, respectively. RP58866 produced significant bradycardia at the 3- and 10-mumol/L concentrations and significant QT interval widening at all three concentrations (p < 0.05). When rat hearts (n = 12 per group) were paced (5 Hz) via the left atrium to prevent bradycardia, the antiarrhythmic effects of 10-mumol/L RP58866 were unmodified (ischemia-induced VF incidence was reduced by drug from 83% in control hearts to 8%; p < 0.05). Similarly, pacing did not prevent the drug's QT-widening activity at 90% repolarization (QT90 was 64 +/- 3 msec in control hearts versus 128 +/- 17 msec in the presence of 10 mumol/L of drug after 10 minutes of ischemia; p < 0.05). These values are similar to equivalent values in unpaced hearts (65 +/- 3 msec in control hearts versus 159 +/- 15 msec with 10 mumol/L of drug; p < 0.05). In separate groups of rat hearts (n = 10 per group) subjected to 10 minutes of ischemia, reperfusion-induced VF incidence was reduced from 90% in control hearts to 10% (p < 0.05), 0% (p < 0.05), and 0% (p < 0.05) by 1-, 3-, and 10-mumol/L RP58866. To examine whether drug actions were species-specific, we performed further studies in rabbit and primate using the middle concentration of RP58866 (3 mumol/L). Ischemia-induced VF incidence was too low in these species to assess the effects of the drug. However, RP58866 widened QT interval (p < 0.05), slowed heart rate (p < 0.05), and reduced the incidence of reperfusion-induced VF from 67% to 8% (p < 0.05) in rabbit. Furthermore, in the more clinically relevant primate species (marmoset; n = 9-12 per group), RP58866 (3 mumol/L) abolished ischemia-induced VT (36% incidence in control hearts; p < 0.05) and significantly reduced the incidence of ischemia-induced ventricular premature beats from 91% to 33% (p < 0.05). The drug was also effective against reperfusion VF in primates (incidence reduced from 64% in control hearts to 11%; p < 0.05). As in rat and rabbit, RP58866 significantly widened QT interval in primate and caused bradycardia before and during ischemia. RP58866 had no significant influence on coronary flow in any species. Finally, in further studies on rat, QT widening by RP58866 was found to persist relatively unmodified in nonischemic hearts perfused with solution containing K+ elevated to 8 mmol/L to mimic the early ischemic milieu. CONCLUSIONS RP58866, a selective IK1 blocker, is a potent and efficacious new antiarrhythmic drug in ischemia and reperfusion in rat, rabbit, and primate. When tested in rat, pharmacological activity was undiminished by cardiac pacing or elevation of extracellular K+.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference63 articles.

1. Vaughan Williams EM: Classification of antiarrhythmic drugs in Sandoe E Flensted-Jenson E Olsen EH (eds): Symposium on Cardiac Arrhythmias. Denmark Elsinore 1970 pp 449-472

2. Tedisamil blocks the transient and delayed rectifier K' currents in mammalian cardiac and atrial cells;Dukes ID;J Pharmacol Exp Ther,1990

3. Gwilt M Dalrymple HW Blackburn KJ Burges RA Higgins AJ: UK66914: A novel class III antiarrhythmic agent which blocks potassium channels. (abstract) Circulation 1988;78(suppl II):II-150

4. Electrophysiologic Properties of UK-66,914, a Novel Class III Antiarrhythmic Agent

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3