Retro-endocytosis of low density lipoprotein by cultured human skin fibroblasts.

Author:

Aulinskas T H,Oram J F,Bierman E L,Coetzee G A,Gevers W,van der Westhuyzen D R

Abstract

A fraction of the low-density lipoprotein (LDL) internalized by cells via receptor-mediated endocytosis follows a short-circuit pathway, termed "retro-endocytosis," that results in the rapid exocytosis of ligand. Results from the current study suggest that retro-endocytosis of LDL in human fibroblasts is caused by resurfacing of endocytotic vesicles that contain both free and receptor-bound ligand, resulting in discharge of vesicular contents and in spontaneous dissociation of LDL from its receptor. The bulk of the released LDL particles had the same size, density, and immunogenic properties as native LDL, indicating that they were discharged intact. Some of the retro-endocytosed LDL was larger than native LDL, and some exhibited altered sedimentation properties. When fusion of endosomes with lysosomes was inhibited by chilling cells to 18 degrees C, the proportion of intracellular LDL subsequently released was unaffected, suggesting that retro-endocytosis does not require lysosomal participation. Furthermore, the shorter the internalization phase the greater was the proportion of LDL subsequently released, suggesting that LDL was discharged from compartments formed early in endocytosis. Retro-endocytosis of LDL was stimulated by agents that neutralize acid intracellular compartments, such as ionophores (monensin) and weak bases (chloroquine and methylamine). Monensin increased the proportion of intracellular LDL released, suggesting that it had a direct effect on retro-endocytosis. The effect of weak bases appeared to be secondary to their ability to promote cellular accumulation of undegraded LDL. Thus, retro-endocytosis of LDL becomes a major pathway when intracellular compartments fail to maintain a low pH or where the intracellular concentration of LDL reaches abnormal levels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3