Inducible Depletion of Calpain-2 Mitigates Abdominal Aortic Aneurysm in Mice

Author:

Muniappan Latha1,Okuyama Michihiro1,Javidan Aida1,Thiagarajan Devi1,Jiang Weihua1,Moorleghen Jessica J.1,Yang Lihua1,Balakrishnan Anju1,Howatt Deborah A.1,Uchida Haruhito A.2,Saido Takaomi C.3,Subramanian Venkateswaran14ORCID

Affiliation:

1. Saha Cardiovascular Research Center (L.M., M.O., A.J., D.T., W.J., J.J.M., L.Y., A.B., D.A.H., V.S.), University of Kentucky, Lexington.

2. Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University School of Medicine, Dentistry and Pharmaceuticals Sciences, Japan (H.A.U.).

3. Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan (T.C.S.).

4. Department of Physiology (V.S.), University of Kentucky, Lexington.

Abstract

Objective: Cytoskeletal structural proteins maintain cell structural integrity by bridging extracellular matrix with contractile filaments. During abdominal aortic aneurysm (AAA) development, (1) aortic medial degeneration is associated with loss of smooth muscle cell integrity and (2) fibrogenic mesenchymal cells mediate extracellular matrix remodeling. Calpains cleave cytoskeletal proteins that maintain cell structural integrity. Pharmacological inhibition of calpains exert beneficial effects on Ang II (angiotensin II)–induced AAAs in LDLR −/− (low-density receptor deficient) mice. Here, we evaluated the functional contribution of fibrogenic mesenchymal cells-derived calpain-2 on (1) cytoskeletal structural protein and extracellular matrix alterations and (2) AAA progression. Approach and Results: Calpain-2 protein and cytoskeletal protein (filamin and talin) fragmentation are significantly elevated in human and Ang II–induced AAAs in mice. To examine the relative contribution of calpain-2 in AAA development, calpain-2 floxed mice in an LDLR −/− background were bred to mice with a tamoxifen-inducible form of Cre under control of either the ubiquitous promoter, chicken β-actin, or fibrogenic mesenchymal cell-specific promoter, Col1α2 (collagen type 1 alpha 2). Ubiquitous or fibrogenic mesenchymal cell-specific depletion of calpain-2 in mice suppressed Ang II–induced AAAs, filamin/talin fragmentation, while promoting extracellular matrix protein, collagen in the aortas. Calpain-2 silencing in aortic smooth muscle cells or fibroblasts reduced Ang II–induced filamin fragmentation. In addition, silencing of filamin in aortic SMCs significantly reduced collagen protein. Furthermore, calpain-2 deficiency suppressed rupture of established Ang II–induced AAAs in mice. Conclusions: Our studies implicate that calpain-2 deficiency prevents (1) Ang II–induced cytoskeletal structural protein fragmentation and AAA development and (2) stabilize and suppress rupture of established AAAs in mice.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3