HMGB2 Release Promotes Pulmonary Hypertension and Predicts Severity and Mortality of Patients With Pulmonary Arterial Hypertension

Author:

Kong Deping12ORCID,Liu Jing1,Lu Junmi3ORCID,Zeng Cheng1,Chen Hao1,Duan Zhenzhen2,Yu Ke4,Zheng Xialei1,Zou Pu1ORCID,Zhou Liufang15,Lv Yicheng2ORCID,Zeng Qingye2ORCID,Lu Lin6ORCID,Li Jiang1ORCID,He Yuhu1ORCID

Affiliation:

1. Departments of Cardiology (D.K., J. Liu, C.Z., H.C., X.Z., P.Z., L.Z., J. Li, Y.H.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.

2. Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital (D.K., Z.D., Y.L., Q.Z.), Shanghai Jiao Tong University School of Medicine, China.

3. Pathology (J. Lu), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.

4. Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Guangdong, China (K.Y.).

5. Department of Cardiovascular Medicine, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China (L.Z.).

6. Department of Cardiology, Rui Jin Hospital (L.L.), Shanghai Jiao Tong University School of Medicine, China.

Abstract

BACKGROUND: Pulmonary hypertension (PH) is a progressive and life-threatening disease characterized by pulmonary vascular remodeling, which involves aberrant proliferation and apoptosis resistance of the pulmonary arterial smooth muscle cells (PASMCs), resembling the hallmark characteristics of cancer. In cancer, the HMGB2 (high-mobility group box 2) protein promotes the pro-proliferative/antiapoptotic phenotype. However, the function of HMGB2 in PH remains uninvestigated. METHODS: Smooth muscle cell (SMC)–specific HMGB2 knockout or HMGB2-OE (HMGB2 overexpression) mice and HMGB2 silenced rats were used to establish hypoxia+Su5416 (HySu)-induced PH mouse and monocrotaline-induced PH rat models, respectively. The effects of HMGB2 and its underlying mechanisms were subsequently elucidated using RNA-sequencing and cellular and molecular biology analyses. Serum HMGB2 levels were measured in the controls and patients with pulmonary arterial (PA) hypertension. RESULTS: HMGB2 expression was markedly increased in the PAs of patients with PA hypertension and PH rodent models and was predominantly localized in PASMCs. SMC-specific HMGB2 deficiency or silencing attenuated PH development and pulmonary vascular remodeling in hypoxia+Su5416-induced mice and monocrotaline-treated rats. SMC-specific HMGB2 overexpression aggravated hypoxia+Su5416-induced PH. HMGB2 knockdown inhibited PASMC proliferation in vitro in response to PDGF-BB (platelet-derived growth factor-BB). In contrast, HMGB2 protein stimulation caused the hyperproliferation of PASMCs. In addition, HMGB2 promoted PASMC proliferation and the development of PH by RAGE (receptor for advanced glycation end products)/FAK (focal adhesion kinase)-mediated Hippo/YAP (yes-associated protein) signaling suppression. Serum HMGB2 levels were significantly increased in patients with PA hypertension, and they correlated with disease severity, predicting worse survival. CONCLUSIONS: Our findings indicate that targeting HMGB2 might be a novel therapeutic strategy for treating PH. Serum HMGB2 levels could serve as a novel biomarker for diagnosing PA hypertension and determining its prognosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3