Inflammatory Cell–Derived MYDGF Attenuates Endothelial LDL Transcytosis to Protect Against Atherogenesis

Author:

Xu Jinling12,Ma Huaxing3,Shi Lingfeng12,Zhou Hui4,Cheng Yangyang13,Tong Jiayue12,Meng Biying1,Xu Xiaoli1ORCID,He Kaiyue2,Ding Sheng2,Zhang Jiajia1,Yue Ling1,Xiang Guangda12ORCID

Affiliation:

1. Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.).

2. The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.).

3. Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, China (H.M.).

4. Department of General Surgery, The Third Xiangya Hospital, Central South University, Hunan, China (H.Z.).

Abstract

BACKGROUND: Inflammation contributes to the pathogenesis of atherosclerosis. But little is known about the potential benefits of inflammatory cells to atherosclerosis. The aim of this study was to investigate the function of inflammatory cells/endothelium axis and determine whether and how inflammatory cell–derived MYDGF (myeloid-derived growth factor) inhibited endothelial LDL (low-density lipoprotein) transcytosis. METHODS: In in vivo experiments, both loss- and gain-of-function strategies were used to evaluate the effect of inflammatory cell–derived MYDGF on LDL transcytosis. We generated monocyte/macrophage-targeted MYDGF-null mice on an Ldlr (LDL receptor) −/− background in the loss-of-function strategy and restored the inflammatory cell–derived MYDGF by bone marrow transplantation and inflammatory cell–specific overexpression of MYDGF mice model in the gain-of-function strategy. In in vitro experiments, coculture experiments between primary mouse aortic endothelial cells and macrophages and mouse aortic endothelial cells supplemented with or without recombinant MYDGF were conducted. RESULTS: Inflammatory cell–derived MYDGF deficiency aggravated endothelial LDL transcytosis, drove LDL uptake by artery wall, and thus exacerbated atherosclerosis in vivo. Inflammatory cell–derived MYDGF restoration by bone marrow transplantation and inflammatory cell MYDGF overexpression alleviated LDL transport across the endothelium, prevented LDL accumulation in the subendothelial space, and subsequently ameliorated atherosclerosis in vivo. Furthermore, in the in vitro study, macrophages isolated from MYDGF +/+ mice and recombinant MYDGF attenuated LDL transcytosis and uptake in mouse aortic endothelial cells. Mechanistically, MYDGF inhibited MAP4K4 (mitogen-activated protein kinase kinase kinase kinase isoform 4) phosphorylation, enhanced activation of Akt (protein kinase B)-1, and diminished the FoxO (forkhead box O) 3a signaling cascade to exert protective effects of MYDGF on LDL transcytosis and atherosclerosis. CONCLUSIONS: The findings support a role for inflammatory cell–derived MYDGF served as a cross talk factor between inflammatory cells and endothelial cells that inhibits LDL transcytosis across endothelium. MYDGF may become a novel therapeutic drug for atherosclerosis, and the beneficial effects of inflammatory cell in atherosclerosis deserve further attention.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3