Endothelial TFEB (Transcription Factor EB) Improves Glucose Tolerance via Upregulation of IRS (Insulin Receptor Substrate) 1 and IRS2

Author:

Sun Jinjian12,Lu Haocheng1,Liang Wenying1,Zhao Guizhen1,Ren Lu3ORCID,Hu Die12,Chang Ziyi12,Liu Yuhao12,Garcia-Barrio Minerva T.1ORCID,Zhang Jifeng1ORCID,Chen Y. Eugene1ORCID,Fan Yanbo134ORCID

Affiliation:

1. Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (J.S., H.L., W.L., G.Z., D.H., Z.C., Y.L., M.T.G.-B., J.Z., Y.E.C., Y.F.).

2. Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China (J.S., D.H., Z.C., Y.L.).

3. Department of Cancer Biology (L.R., Y.F.), University of Cincinnati College of Medicine, OH.

4. Division of Cardiovascular Health and Disease, Department of Internal Medicine (Y.F.), University of Cincinnati College of Medicine, OH.

Abstract

Objective: Vascular endothelial cells (ECs) play a critical role in maintaining vascular homeostasis. Aberrant EC metabolism leads to vascular dysfunction and metabolic diseases. TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy, has protective effects on vascular inflammation and atherosclerosis. However, the role of endothelial TFEB in metabolism remains to be explored. In this study, we sought to investigate the role of endothelial TFEB in glucose metabolism and underlying molecular mechanisms. Approach and Results: To determine whether endothelial TFEB is critical for glucose metabolism in vivo, we utilized EC-selective TFEB knockout and EC-selective TFEB transgenic mice fed a high-fat diet. EC-selective TFEB knockout mice exhibited significantly impaired glucose tolerance compared with control mice. Consistently, EC-selective TFEB transgenic mice showed improved glucose tolerance. In primary human ECs, small interfering RNA-mediated TFEB knockdown blunts Akt (AKT serine/threonine kinase) signaling. Adenovirus-mediated overexpression of TFEB consistently activates Akt and significantly increases glucose uptake in ECs. Mechanistically, TFEB upregulates IRS1 and IRS2 (insulin receptor substrate 1 and 2). TFEB increases IRS2 transcription measured by reporter gene and chromatin immunoprecipitation assays. Furthermore, we found that TFEB increases IRS1 protein via downregulation of microRNAs (miR-335, miR-495, and miR-548o). In vivo, Akt signaling in the skeletal muscle and adipose tissue was significantly impaired in EC-selective TFEB knockout mice and consistently improved in EC-selective TFEB transgenic mice on high-fat diet. Conclusions: Our data revealed a critical role of TFEB in endothelial metabolism and suggest that TFEB constitutes a potential molecular target for the treatment of vascular and metabolic diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3