Divergent Roles of Matrix Metalloproteinase 2 in Pathogenesis of Thoracic Aortic Aneurysm

Author:

Shen Mengcheng1,Lee Jiwon1,Basu Ratnadeep1,Sakamuri Siva S.V.P.1,Wang Xiuhua1,Fan Dong1,Kassiri Zamaneh1

Affiliation:

1. From the Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and Cardiovascular Research Center, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada.

Abstract

Objective— Aortic aneurysm, focal dilation of the aorta, results from impaired integrity of aortic extracellular matrix (ECM). Matrix metalloproteinases (MMPs) are traditionally known as ECM-degrading enzymes. MMP2 has been associated with aneurysm in patients and in animal models. We investigated the role of MMP2 in thoracic aortic aneurysm using 2 models of aortic remodeling and aneurysm. Approach and Results— Male 10-week-old MMP2-deficient (MMP2 −/− ) and wild-type mice received angiotensin II (Ang II, 1.5 mg/kg/day) or saline (Alzet pump) for 4 weeks. Although both genotypes exhibited dilation of the ascending aorta after Ang II infusion, MMP2 −/− mice showed more severe dilation of the thoracic aorta and thoracic aortic aneurysm. The Ang II–induced increase in elastin and collagen (mRNA and protein) was markedly suppressed in MMP2 −/− thoracic aorta and smooth muscle cells, whereas only mRNA levels were reduced in MMP2 −/− -Ang II abdominal aorta. Consistent with the absence of MMP2, proteolytic activities were lower in MMP2 −/− -Ang II compared with wild-type-Ang II thoracic and abdominal aorta. MMP2-deficiency suppressed the activation of latent transforming growth factor-β and the Smad2/3 pathway in vivo and in vitro. Intriguingly, MMP2 −/− mice were protected against CaCl 2 -induced thoracic aortic aneurysm, which triggered ECM degradation but not synthesis. Conclusions— This study reveals the dual role of MMP2 in ECM degradation, as well as ECM synthesis. Moreover, the greater susceptibility of the thoracic aorta to impaired ECM synthesis, compared with vulnerability of the abdominal aorta to aberrant ECM degradation, provides an insight into the regional susceptibility of the aorta to aneurysm development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3