Affiliation:
1. From the Departments of Physiology (S.C., J.A.K., H.-Y.N., S.-E.C., S.P., S.H.S.) and Biochemistry (S.-C.J.), Medical School, Ewha Womans University, Seoul, Korea.
Abstract
Objective—
Globotriaosylceramide (Gb3) induces K
Ca
3.1 downregulation in Fabry disease (FD). We investigated whether Gb3 induces K
Ca
3.1 endocytosis and degradation.
Approach and Results—
K
Ca
3.1, especially plasma membrane–localized K
Ca
3.1, was downregulated in both Gb3-treated mouse aortic endothelial cells (MAECs) and human umbilical vein endothelial cells. Gb3-induced K
Ca
3.1 downregulation was prevented by lysosomal inhibitors but not by a proteosomal inhibitor. Endoplasmic reticulum stress–inducing agents did not induce K
Ca
3.1 downregulation. Gb3 upregulated the protein levels of early endosome antigen 1 and lysosomal-associated membrane protein 2 in MAECs. Compared with MAECs from age-matched wild-type mice, those from aged α-galactosidase A (Gla)-knockout mice, an animal model of FD, showed downregulated K
Ca
3.1 expression and upregulated early endosome antigen 1 and lysosomal-associated membrane protein 2 expression. In contrast, no significant difference was found in early endosome antigen 1 and lysosomal-associated membrane protein 2 expression between young Gla-knockout and wild-type MAECs. In aged Gla-knockout MAECs, clathrin was translocated close to the cell border and clathrin knockdown recovered K
Ca
3.1 expression. Rab5, an effector of early endosome antigen 1, was upregulated, and Rab5 knockdown restored K
Ca
3.1 expression, the current, and endothelium-dependent relaxation.
Conclusions
—Gb3 accelerates the endocytosis and lysosomal degradation of endothelial K
Ca
3.1 via a clathrin-dependent process, leading to endothelial dysfunction in FD.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献