Long Noncoding RNA TPRG1-AS1 Suppresses Migration of Vascular Smooth Muscle Cells and Attenuates Atherogenesis via Interacting With MYH9 Protein

Author:

Ren Xiaoxiao1ORCID,Zhu Huijuan1ORCID,Deng Keyong1ORCID,Ning Xiaotong1,Li Lin1ORCID,Liu Dan1,Yang Bin1ORCID,Shen Chenyang2,Wang Xianqiang3,Wu Naqiong4,Chen Shufeng1ORCID,Gu Dongfeng1ORCID,Wang Laiyuan1ORCID

Affiliation:

1. Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

2. Department of Vascular Surgery, State Key Laboratory of Cardiovascular Disease (C.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

3. Department of Surgery (X.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

4. Cardiometabolic Center (N.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Abstract

Background: Migration of human aortic smooth muscle cells (HASMCs) contributes to the pathogenesis of atherosclerosis. This study aims to functionally characterize long noncoding RNA TPRG1-AS1 (tumor protein p63 regulated 1, antisense 1) in HASMCs and reveal the underlying mechanism of TPRG1-AS1 in HASMCs migration, neointima formation, and subsequent atherosclerosis. Methods: The expression of TPRG1-AS1 in atherosclerotic plaques was verified a series of in silico analysis and quantitative real-time polymerase chain reaction analysis. Northern blot, rapid amplification of cDNA ends and Sanger sequencing were used to determine its full length. In vitro transcription-translation assay was used to investigate the protein-coding capacity of TPRG1-AS1. RNA fluorescent in situ hybridization was used to confirm its subcellular localization. Loss- and gain-of-function studies were used to investigate the function of TPRG1-AS1. Furthermore, the effect of TPRG1-AS1 on the pathological response was evaluated in carotid balloon injury model, wire injury model, and atherosclerosis model, respectively. Results: TPRG1-AS1 was significantly increased in atherosclerotic plaques. TPRG1-AS1 did not encode any proteins and its full length was 1279nt, which was bona fide a long noncoding RNA. TPRG1-AS1 was mainly localized in cytoplasmic and perinuclear regions in HASMCs. TPRG1-AS1 directly interacted with MYH9 (myosin heavy chain 9) protein in HASMCs, promoted MYH9 protein degradation through the proteasome pathway, hindered F-actin stress fiber formation, and finally inhibited HASMCs migration. Vascular smooth muscle cell-specific transgenic overexpression of TPRG1-AS1 significantly reduced neointima formation, and attenuated atherosclerosis in apolipoprotein E knockout ( Apoe −/− ) mice. Conclusions: This study demonstrated that TPRG1-AS1 inhibited HASMCs migration through interacting with MYH9 protein and consequently suppressed neointima formation and atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3