Platelet Activation by Low Concentrations of Intact Oxidized LDL Particles Involves the PAF Receptor

Author:

Chen Rui1,Chen Xi1,Salomon Robert G.1,McIntyre Thomas M.1

Affiliation:

1. From the Department of Cell Biology (R.C., T.M.M.), Lerner Research Institute, Cleveland Clinic College of Medicine of Case Western Reserve University; and the Department of Chemistry (X.C., R.G.S.), Case Western Reserve University, Cleveland, Ohio.

Abstract

Objective— Mitochondrial depolarization aids platelet activation. Oxidized LDL (oxLDL) contains the medium length oxidatively truncated phospholipid hexadecyl azelaoyl-lysoPAF (HAz-LPAF) that disrupts mitochondrial function in nucleated cells, so oxLDL may augment platelet activation. Methods and Results— Flow cytometry showed intact oxLDL particles synergized with subthreshold amounts of soluble agonists to increase intracellular Ca 2+ , and initiate platelet aggregation and surface expression of activated gpIIb/IIIa and P-selectin. oxLDL also induced aggregation and increased intracellular Ca 2+ in FURA2-labeled cells by itself at low, although not higher, concentrations. HAz-LPAF, alone and in combination with substimulatory amounts of thrombin, rapidly increased cytoplasmic Ca 2+ and initiated aggregation. HAz-LPAF depolarized mitochondria in intact platelets, but this required concentrations beyond those that directly activated platelets. An unexpectedly large series of chemically pure truncated phospholipids generated by oxidative fragmentation of arachidonoyl-, docosahexaneoyl-, or linoleoyl alkyl phospholipids were platelet agonists. The PAF receptor, thought to effectively recognize only phospholipids with very short sn- 2 residues, was essential for platelet activation because PAF receptor agonists blocked signaling by all these medium length phospholipids and oxLDL. Conclusions— Intact oxLDL particles activate platelets through the PAF receptor, and the PAF receptor responds to a far wider range of oxidized phospholipids in oxLDL than anticipated.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3