Binding Preferences for GPIHBP1, a Glycosylphosphatidylinositol-Anchored Protein of Capillary Endothelial Cells

Author:

Gin Peter1,Beigneux Anne P.1,Voss Constance1,Davies Brandon S.J.1,Beckstead Jennifer A.1,Ryan Robert O.1,Bensadoun André1,Fong Loren G.1,Young Stephen G.1

Affiliation:

1. From the Department of Medicine (P.G., A.P.B., C.V., B.S.J.D., L.G.F., and S.G.Y.), David Geffen School of Medicine, University of California, Los Angeles; the Department of Human Genetics (S.G.Y.), David Geffen School of Medicine, University of California, Los Angeles; Children's Hospital Oakland Research Institute (J.A.B. and R.O.R.), Oakland, Calif; and the Division of Nutritional Science (A.B.), Cornell University, Ithaca, NY.

Abstract

Objective— To define the ability of GPIHBP1 to bind other lipase family members and other apolipoproteins (apos) and lipoproteins. Methods and Results— GPIHBP1, a GPI-anchored lymphocyte antigen (Ly)6 protein of capillary endothelial cells, binds lipoprotein lipase (LPL) avidly, but its ability to bind related lipase family members has never been evaluated. As judged by cell-based and cell-free binding assays, LPL binds to GPIHBP1, but other members of the lipase family do not. We also examined the binding of apoAV-phospholipid disks to GPIHBP1. ApoAV binds avidly to GPIHBP1-transfected cells; this binding requires GPIHBP1's amino-terminal acidic domain and is independent of its cysteine-rich Ly6 domain (the latter domain is essential for LPL binding). GPIHBP1-transfected cells did not bind high-density lipoprotein. Chylomicrons bind avidly to GPIHBP1-transfected Chinese hamster ovary cells, but this binding is dependent on GPIHBP1's ability to bind LPL within the cell culture medium. Conclusion— GPIHBP1 binds LPL but does not bind other lipase family members. GPIHBP1 binds apoAV but does not bind apoAI or high-density lipoprotein. The ability of GPIHBP1-transfected Chinese hamster ovary cells to bind chylomicrons is mediated by LPL; chylomicron binding does not occur unless GPIHBP1 first captures LPL from the cell culture medium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3