Weibel-Palade Bodies Orchestrate Pericytes During Angiogenesis

Author:

Cossutta Mélissande1,Darche Marie1,Carpentier Gilles1,Houppe Claire1,Ponzo Matteo12,Raineri Fabio1,Vallée Benoit1,Gilles Maud-Emmanuelle1,Villain Delphine1,Picard Emilie3,Casari Caterina4,Denis Cécile4,Paques Michel5,Courty José1,Cascone Ilaria1

Affiliation:

1. From the CRRET laboratory, CNRS ERL 9215, University of Paris-Est Créteil (UPEC), France (M.C., M.D., G.C., C.H., M.P., F.R., B.V., M.-E.G., D.V., J.C., I.C.)

2. Quinze Vingts National Ophthalmology Hospital, Paris, France (M.P.)

3. Inserm, U1138, Team 17, Physiopathology of Ocular Diseases to Clinical Development, University of Paris Descartes Sorbonne Paris Cité, Cordeliers Research Center, France (E.P.)

4. Inserm, UMR S1176, Paris-Sud University, Paris-Saclay University, Le Kremlin-Bicêtre, France (C.C., C.D.).

5. Department of Therapeutics, Sorbonne University, INSERM, CNRS, Vision Institute, Paris, France (M.P.)

Abstract

Objective Weibel-Palade bodies (WPBs) are endothelial cell (EC)-specific organelles formed by vWF (von Willebrand factor) polymerization and that contain the proangiogenic factor Ang-2 (angiopoietin-2). WPB exocytosis has been shown to be implicated for vascular repair and inflammatory responses. Here, we investigate the role of WPBs during angiogenesis and vessel stabilization. Approach and Results WPB density in ECs decreased at the angiogenic front of retinal vascular network during development and neovascularization compared with stable vessels. In vitro, VEGF (vascular endothelial growth factor) induced a VEGFR-2 (vascular endothelial growth factor receptor-2)-dependent exocytosis of WPBs that contain Ang-2 and consequently the secretion of vWF and Ang-2. Blocking VEGF-dependant WPB exocytosis and Ang-2 secretion promoted pericyte migration toward ECs. Pericyte migration was inhibited by adding recombinant Ang-2 or by silencing Ang-1 (angiopoietin-1) or Tie2 (angiopoietin-1 receptor) in pericytes. Consistently, in vivo anti-VEGF treatment induced accumulation of WPBs in retinal vessels because of the inhibition of WPB exocytosis and promoted the increase of pericyte coverage of retinal vessels during angiogenesis. In tumor angiogenesis, depletion of WPBs in vWF knockout tumor-bearing mice promoted an increase of tumor angiogenesis and a decrease of pericyte coverage of tumor vessels. By another approach, normalized tumor vessels had higher WPB density. Conclusions We demonstrate that WPB exocytosis and Ang-2 secretion are regulated during angiogenesis to limit pericyte coverage of remodeling vessels by disrupting Ang-1/Tie2 autocrine signaling in pericytes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3