Intracellular Localization of Cthrc1 Characterizes Differentiated Smooth Muscle

Author:

LeClair Renée J.1,Wang Qiaozeng1,Benson Meredith A.1,Prudovsky Igor1,Lindner Volkhard1

Affiliation:

1. From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough.

Abstract

Objective— We recently reported expression of collagen triple helix repeat containing-1 (Cthrc1) in injured arteries and proteolytic cleavage of Cthrc1 in smooth muscle cells in vitro. The present study characterizes Cthrc1 processing and determines its biological significance. Methods and Results— Domain-specific antibodies localized full-length Cthrc1 in the cytoplasm of vascular, gastrointestinal, and uterine smooth muscle as well as in some neurons. Unlike smooth muscle α-actin, Cthrc1 was not expressed in the embryonic myocardium. Intracellular localization of full-length Cthrc1 was sharply reduced in dedifferentiated smooth muscle of the developing neointima despite the previously shown increase in mRNA levels with accompanying extracellular Cthrc1 immunoreactivity. Immunoblotting suggested an apparent covalent association of monomeric full-length Cthrc1 with a cytoplasmic protein present in differentiated smooth muscle. Plasmin was identified as a protease that cleaved a putative propeptide generating an N-terminally truncated form of Cthrc1 with increased inhibitory activity of procollagen synthesis. Conclusions— Our data show that the differentiated smooth muscle cell phenotype is associated with the intracellular localization of noncleaved Cthrc1 despite the presence of a signal peptide. On arterial injury, increased Cthrc1 expression with apparent extracellular localization of N-terminally truncated Cthrc1 occurs. Removal of the propeptide correlated with increased activity of the molecule.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3