Preservation of Rabbit Aorta Elastin From Degradation by Gingival Fibroblasts in an Ex Vivo Model

Author:

Gogly Bruno1,Naveau Adrien1,Fournier Benjamin1,Reinald Nicoleta1,Durand Eric1,Brasselet Camille1,Coulomb Bernard1,Lafont Antoine1

Affiliation:

1. From the Paris-Descartes University, Paris-Descartes Medicine Faculty, INSERM U849 (B.G., A.N., B.F., N.R., B.C., A.L.), the Dental Department, Hopital Albert Chenevier (B.G., A.N., B.F., N.R., E.D., C.B.), and the Cardiology Department, Hopital Europeen Georges Pompidou (E.D., C.B., A.L.), Paris, France.

Abstract

Objective— Embryo-like gingival healing properties are attributed to the gingival fibroblast (GF) and could be used as a model for other types of healing dysfunctions. Abdominal aortic aneurysm (AAA) formation is associated with elastin degradation and increase in matrix metalloproteinase (MMP)-9 activity. We aimed to validate the concept of using GF healing properties in arteries. Methods and Results— We evaluated MMP-9 and its tissue inhibitor (TIMP-1) in rabbit aortic rings cultured in collagen gels with or without GFs and observed throughout 21 days. We also performed cocultures of human smooth muscle cells (hSMCs) with either gingival, dermal, or adventitial fibroblasts, and alone (control). In control arteries, elastic fibers became spontaneously sparse. In presence of GFs, elastic fibers were preserved. There was a dramatically reduced protein level of MMP-9 in coculture of aorta and GFs, in contrast with control aorta. MMP-9 expression was unaffected by GFs. MMP-9 inhibition was related to increased TIMP-1 secretion, TIMP-1 forming a complex with MMP-9. Cell cocultures of hSMC with GFs showed similar results. Dermal and adventitial fibroblasts did not affect MMP-9. Conclusions— Elastic fiber degradation was specifically preserved by GFs via reduction of MMP-9 protein level by increasing TIMP-1 synthesis. Vascular transfer of gingival fibroblasts could be a promising approach to treat AAA.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3