The Use of High-Throughput Technologies to Investigate Vascular Inflammation and Atherosclerosis

Author:

Döring Yvonne1,Noels Heidi1,Weber Christian1

Affiliation:

1. From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., C.W.); Institute for Molecular Cardiovascular Research, Rheinisch-Westfälische Technische Hochschule Aachen University, University Clinic Aachen, Aachen, Germany (H.N.); Munich Heart Alliance, Munich, Germany (C.W.); Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.W.).

Abstract

The greatest challenge of scientific research is to understand the causes and consequences of disease. In recent years, great efforts have been devoted to unraveling the basic mechanisms of atherosclerosis (the underlying pathology of cardiovascular disease), which remains a major cause of morbidity and mortality worldwide. Because of the complex and multifactorial pathophysiology of cardiovascular disease, different research techniques have increasingly been combined to unravel genetic aspects, molecular pathways, and cellular functions involved in atherogenesis, vascular inflammation, and dyslipidemia to gain a multifaceted picture addressing this complexity. Thanks to the rapid evolution of high-throughput technologies, we are now able to generate large-scale data on the DNA, RNA, and protein levels. With the help of sophisticated computational tools, these data sets are integrated to enhance information extraction and are being increasingly used in a systems biology approach to model biological processes as interconnected and regulated networks. This review exemplifies the use of high-throughput technologies—such as genomics, transcriptomics, proteomics, and epigenomics—and systems biology to explore pathomechanisms of vascular inflammation and atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3