Affiliation:
1. From the Centre for Vascular Research, University of New South Wales, Sydney, Australia.
Abstract
Objectives—
Coronary reperfusion has been the mainstay therapy for reduced infarct size after a heart attack. However, this intervention also results in myocardial injury by initiating a marked inflammatory reaction, and new treatments are keenly sought.
Methods and Results—
The basic-region leucine zipper protein, c-Jun is poorly expressed in the normal myocardium and is induced within 24 hours after myocardial ischemia-reperfusion injury. Synthetic catalytic DNA molecules (DNAzymes) targeting c-Jun (Dz13) reduce infarct size in the area-at-risk (AAR) regardless of whether it is delivered intramyocardially at the initiation of ischemia or at the time of reperfusion. Dz13 attenuates neutrophil infiltration, c-Jun and ICAM-1 expression in vascular endothelium, cardiomyocyte apoptosis, and the generation of reactive oxygen species in the reperfused myocardium. It inhibits infiltration into the AAR of complement 3 (C3), C3a receptor (C3aR), membrane attack complex-1 (Mac-1), or matrix metalloproteinase-2 (MMP-2) positive inflammatory cells. Dz13 also improves cardiac function without influencing myocardial vascularity or fibrosis.
Conclusion—
These findings demonstrate the regulatory role of c-Jun in the pathogenesis of myocardial inflammation and infarction following ischemia-reperfusion injury, and inhibition of this process using catalytic DNA.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献