Diabetes and Metabolic Drivers of Trained Immunity

Author:

Choudhury Robin P.1ORCID,Edgar Laurienne12ORCID,Rydén Mikael3,Fisher Edward A.4ORCID

Affiliation:

1. Radcliffe Department of Medicine, University of Oxford, United Kingdom (R.P.C., L.E.).

2. Novo Nordisk A/S, Gatwick, United Kingdom (L.E.).

3. Department of Medicine (H7), Karolinska Institute, C2-94, Karolinska University Hospital, Huddinge, Stockholm, Sweden (M.R.).

4. Department of Medicine, NYU Grossman School of Medicine, NY (E.A.F.).

Abstract

Accumulating evidence shows how diverse physiological functions, such as metabolism, immunity, tissue homeostasis, and hematopoiesis, are intricately and profoundly intertwined at multiple levels. This brief review will present evidence from a rapidly expanding field of immunometabolism, highlighting how cells that are relevant to processes at play in determining vascular health and disease can be programmed by changes in their metabolic environment. It will focus on how such changes can be imprinted or trained, particularly through epigenetic modifications, such that adaptations driven by metabolic signals can cause persistent changes in cell function, even after the original stimulus has been corrected or removed. Recognition of these processes and elucidation of the mechanisms underlying them stand to have far-reaching implications for the diagnosis and treatment of diabetes and related metabolic states.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3