Endothelial Cell Insulin Signaling Regulates CXCR4 (C-X-C Motif Chemokine Receptor 4) and Limits Leukocyte Adhesion to Endothelium

Author:

Rathjen Thomas12,Kunkemoeller Britta1,Cederquist Carly T.1,Wang Xuanchun1ORCID,Lockhart Sam M.1,Patti James C.1,Willenbrock Hanni2,Olsen Grith Skytte2,Povlsen Gro Klitgaard2,Beck Hans Christian3ORCID,Rasmussen Lars Melholt3ORCID,Li Qian1,Park Kyoungmin1,King George L.1ORCID,Rask-Madsen Christian1ORCID

Affiliation:

1. Joslin Diabetes Center and Harvard Medical School, Boston, MA (T.R., B.K., C.T.C., X.W., S.M.L., J.C.P., Q.L., K.P., G.L.K., C.R.-M.).

2. Novo Nordisk A/S, Måløv, Denmark (T.R., H.W., G.S.O., G.K.P.).

3. Odense University Hospital, University of Southern Denmark (H.C.B., L.M.R.).

Abstract

Background: An activated, proinflammatory endothelium is a key feature in the development of complications of obesity and type 2 diabetes and can be caused by insulin resistance in endothelial cells. Methods: We analyzed primary human endothelial cells by RNA sequencing to discover novel insulin-regulated genes and used endothelial cell culture and animal models to characterize signaling through CXCR4 (C-X-C motif chemokine receptor 4) in endothelial cells. Results: CXCR4 was one of the genes most potently regulated by insulin, and this was mediated by PI3K (phosphatidylinositol 3-kinase), likely through FoxO1, which bound to the CXCR4 promoter. CXCR4 mRNA in CD31+ cells was 77% higher in mice with diet-induced obesity compared with lean controls and 37% higher in db/db mice than db/+ controls, consistent with upregulation of CXCR4 in endothelial cell insulin resistance. SDF-1 (stromal cell–derived factor-1)—the ligand for CXCR4—increased leukocyte adhesion to cultured endothelial cells. This effect was lost after deletion of CXCR4 by gene editing while 80% of the increase was prevented by treatment of endothelial cells with insulin. In vivo microscopy of mesenteric venules showed an increase in leukocyte rolling after intravenous injection of SDF-1, but most of this response was prevented in transgenic mice with endothelial overexpression of IRS-1 (insulin receptor substrate-1). Conclusions: Endothelial cell insulin signaling limits leukocyte/endothelial cell interaction induced by SDF-1 through downregulation of CXCR4. Improving insulin signaling in endothelial cells or inhibiting endothelial CXCR4 may reduce immune cell recruitment to the vascular wall or tissue parenchyma in insulin resistance and thereby help prevent several vascular complications.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3