Janus Kinase 3 Deficiency Promotes Vascular Reendothelialization—Brief Report

Author:

Wang Yung-Chun1,Cai Dunpeng12,Cui Xiao-Bing1,Chuang Ya-Hui1,Fay William P.234ORCID,Chen Shi-You12ORCID

Affiliation:

1. Departments of Surgery (Y.-C.W., D.C., X.-B.C., Y.-H.C., S.-Y.C.), University of Missouri School of Medicine, Columbia.

2. Medical Pharmacology and Physiology (D.C., W.P.F., S.-Y.C.), University of Missouri School of Medicine, Columbia.

3. Medicine (W.P.F.), University of Missouri School of Medicine, Columbia.

4. The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (W.P.F.).

Abstract

Objective: The objective of this study is to determine the role of JAK3 (Janus kinase 3) in reendothelialization after vascular injury. Methods and Results: By using mouse carotid artery wire injury and rat balloon injury model, we found that JAK3 regulates reendothelialization and endothelial cell proliferation after vascular injury. JAK3 and phospho-JAK3 levels were increased in neointimal smooth muscle cells in response to vascular injury in mice. JAK3 deficiency dramatically attenuated the injury-induced intimal hyperplasia in carotid arteries of both male and female mice. Importantly, JAK3 deficiency caused an increased rate of reendothelialization following mechanical injury. Likewise, knockdown of JAK3 in medial smooth muscle cells elicited an accelerated reendothelialization with reduced intimal hyperplasia following balloon injury in rat carotid arteries. Interestingly, knockdown of JAK3 restored the expression of smooth muscle cell contractile protein smooth muscle α-actin in injury-induced intimal smooth muscle cells while increased the proliferating endothelial cells in the intima area. Conclusions: Our results demonstrate a novel role of JAK3 in the regeneration of endothelium after vascular injury, which may provide a new strategy to enhance reendothelialization while suppressing neointimal formation for effective vascular repair from injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3