Low LAL (Lysosomal Acid Lipase) Expression by Smooth Muscle Cells Relative to Macrophages as a Mechanism for Arterial Foam Cell Formation

Author:

Dubland Joshua A.1ORCID,Allahverdian Sima1,Besler Katrina J.1,Ortega Carleena1,Wang Ying2,Pryma Collin S.1ORCID,Boukais Kamel1,Chan Teddy1,Seidman Michael A.3,Francis Gordon A.1ORCID

Affiliation:

1. Departments of Medicine (J.A.D., S.A., K.J.B., C.O., C.S.P., K.B., T.C., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, Vancouver, Canada.

2. Pathology and Laboratory Medicine (Y.W.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, Vancouver, Canada.

3. Laboratory Medicine and Pathobiology, University of Toronto, Canada (M.A.S.).

Abstract

Objective: We previously reported smooth muscle cells (SMCs) represent ≥50% of foam cells in human coronary and ≈70% in apoE (apolipoprotein E)-deficient mouse aortic atheromas and exhibit reduced expression of the cholesterol exporter ABCA1 (ATP-binding cassette transporter A1). A major stimulus for ABCA1 expression is flux of cholesterol out of lysosomes, generated by hydrolysis of lipoprotein cholesteryl esters by LAL (lysosomal acid lipase). In this study, we investigated the potential role lysosomal dysfunction might play in foam cell formation by arterial SMCs. Approach and Results: Human monocyte-derived macrophages (macrophages) and arterial SMCs were treated with aggregated LDL (low-density lipoprotein) to increase intracellular cholesterol and investigated for lysosomal and postlysosomal cholesterol metabolism defects. Human and mouse atheromas were analyzed for LAL expression. Unlike macrophages, aggregated LDL uptake failed to upregulate ABCA1 expression, downregulate new cholesterol synthesis, or to significantly increase 27-hydroxycholesterol levels in SMCs. Confocal microscopy revealed retention of neutral lipids within lysosomal compartments in SMCs, while macrophages showed most lipids as cytosolic droplets. LIPA (lipase A) mRNA levels and LAL protein were markedly reduced in SMCs. Treatment of SMCs with medium containing LAL resulted in significantly reduced lysosomal lipid accumulation and increased cholesterol efflux to apoA-I (apolipoprotein AI). Human and mouse atheromas exhibited low LAL/ Lipa expression in intimal SMCs when compared with intimal macrophages. Conclusions: These findings indicate the inherently low level of LAL in SMCs compared with macrophages is associated with reduced capacity to catabolize atherogenic lipoproteins and is a mechanism for SMC foam cell formation in atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3