AUP1 (Ancient Ubiquitous Protein 1) Is a Key Determinant of Hepatic Very-Low–Density Lipoprotein Assembly and Secretion

Author:

Zhang Jing1,Zamani Mostafa1,Thiele Christoph1,Taher Jennifer1,Amir Alipour Mohsen1,Yao Zemin1,Adeli Khosrow1

Affiliation:

1. From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (J.Z., M.Z., J.T., K.A.); Department of Biochemistry (M.Z., K.A.) and Department of Laboratory Medicine and Pathobiology (J.T., K.A.), University of Toronto, Ontario, Canada; Biochemistry and Cell Biology of Lipids Unit, LIMES Institute, University of Bonn, Germany (C.T.); and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada (M...

Abstract

Objective— AUP1 (ancient ubiquitous protein 1) is an endoplasmic reticulum–associated protein that also localizes to the surface of lipid droplets (LDs), with dual role in protein quality control and LD regulation. Here, we investigated the role of AUP1 in hepatic lipid mobilization and demonstrate critical roles in intracellular biogenesis of apoB100 (apolipoprotein B-100), LD mobilization, and very-low–density lipoprotein (VLDL) assembly and secretion. Approach and Results— siRNA (short/small interfering RNA) knockdown of AUP1 significantly increased secretion of VLDL-sized apoB100-containing particles from HepG2 cells, correcting a key metabolic defect in these cells that normally do not secrete much VLDL. Secreted particles contained higher levels of metabolically labeled triglyceride, and AUP1-deficient cells displayed a larger average size of LDs, suggesting a role for AUP1 in lipid mobilization. Importantly, AUP1 was also found to directly interact with apoB100, and this interaction was enhanced with proteasomal inhibition. Knockdown of AUP1 reduced apoB100 ubiquitination, decreased intracellular degradation of newly synthesized apoB100, and enhanced extracellular apoB100 secretion. Interestingly, the stimulatory effect of AUP1 knockdown on VLDL assembly was reminiscent of the effect previously observed after MEK–ERK (mitogen-activated protein kinase kinase–extracellular signal-regulated kinase) inhibition; however, further studies indicated that the AUP1 effect was independent of MEK–ERK signaling. Conclusions— In summary, our findings reveal an important role for AUP1 as a regulator of apoB100 stability, hepatic LD metabolism, and intracellular lipidation of VLDL particles. AUP1 may be a crucial factor in apoB100 quality control, determining the rate at which apoB100 is degraded or lipidated to enable VLDL particle assembly and secretion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3