NO Augments Endothelial Reactivity by Reducing Myoendothelial Calcium Signal Spreading

Author:

Pogoda Kristin1,Mannell Hanna1,Blodow Stephanie1,Schneider Holger1,Schubert Kai Michael1,Qiu Jiehua1,Schmidt Andreas1,Imhof Axel1,Beck Heike1,Tanase Laurentia Irina1,Pfeifer Alexander1,Pohl Ulrich1,Kameritsch Petra1

Affiliation:

1. From the Walter Brendel Centre of Experimental Medicine, University Hospital, Biomedical Center, Munich, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., L.I.T., U.P., P.K.); Protein Analysis Unit, Biomedical Center, Munich, Germany (A.S., A.I.); DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (K.P., H.M., S.B., H.S., K.M.S., J.Q., H.B., U.P., P.K.); Munich Cluster for Systems Neurology (SyNergY), Germany (A.I., U.P.); and Institute of Pharmacology...

Abstract

Objective— Because of its strategic position between endothelial and smooth muscle cells in microvessels, Cx37 (Connexin 37) plays an important role in myoendothelial gap junctional intercellular communication. We have shown before that NO inhibits gap junctional intercellular communication through gap junctions containing Cx37. However, the underlying mechanism is not yet identified. Approach and Results— Using channel-forming Cx37 mutants exhibiting partial deletions or amino acid exchanges in their C-terminal loops, we now show that the phosphorylation state of a tyrosine residue at position 332 (Y332) in the C-terminus of Cx37 controls the gap junction–dependent spread of calcium signals. Mass spectra revealed that NO protects Cx37 from dephosphorylation at Y332 by inhibition of the protein tyrosine phosphatase SHP-2. Functionally, the inhibition of gap junctional intercellular communication by NO decreased the spread of the calcium signal (induced by mechanical stimulation of individual endothelial cells) from endothelial to smooth muscle cells in intact vessels, while, at the same time, augmenting the calcium signal spreading within the endothelium. Consequently, preincubation of small resistance arteries with exogenous NO enhanced the endothelium-dependent dilator response to acetylcholine in spite of a pharmacological blockade of NO-dependent cGMP formation by the soluable guanylyl cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). Conclusions— Our results identify a novel mechanism by which NO can increase the efficacy of calcium, rising vasoactive agonists in the microvascular endothelium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3