Nitroglycerin-Induced Endothelial Dysfunction and Tolerance Involve Adverse Phosphorylation and S -Glutathionylation of Endothelial Nitric Oxide Synthase

Author:

Knorr Maike1,Hausding Michael1,Kröller-Schuhmacher Swenja1,Steven Sebastian1,Oelze Matthias1,Heeren Tjebo1,Scholz Alexander1,Gori Tommaso1,Wenzel Philip1,Schulz Eberhard1,Daiber Andreas1,Münzel Thomas1

Affiliation:

1. From the Second Medical Clinic, Department of Cardiology (M.K., M.H., S.K.-S., S.S., M.O., T.H., A.S., T.G., P.W., E.S., A.D., T.M.) and Center of Thrombosis and Hemostasis (M.H., S.K.-S., P.W.), Medical Center of Johannes Gutenberg University, Mainz, Germany.

Abstract

Objective— Continuous administration of nitroglycerin (GTN) causes tolerance and endothelial dysfunction by inducing reactive oxygen species (ROS) production from various enzymatic sources, such as mitochondria, NADPH oxidase, and an uncoupled endothelial nitric oxide synthase (eNOS). In the present study, we tested the effects of type 1 angiotensin (AT 1 )-receptor blockade with telmisartan on GTN-induced endothelial dysfunction in particular on eNOS phosphorylation and S -glutathionylation sites and the eNOS cofactor synthesizing enzyme GTP–cyclohydrolase I. Methods and Results— Wistar rats were treated with telmisartan (2.7 or 8 mg/kg per day PO for 10 days) and with GTN (50 mg/kg per day SC for 3 days). Aortic eNOS phosphorylation and S -glutathionylation were assessed using antibodies against phospho-Thr495 and Ser1177 or protein-bound glutathione, which regulate eNOS activity and eNOS-dependent superoxide production (uncoupling). Expression of mitochondrial aldehyde dehydrogenase was determined by Western blotting. Formation of aortic and cardiac ROS was assessed by fluorescence, chemiluminescence, and 3-nitrotyrosine/malondialdehyde-positive protein content. Telmisartan prevented endothelial dysfunction and partially improved nitrate tolerance. Vascular, cardiac, mitochondrial, and white blood cell ROS formation were significantly increased by GTN treatment and inhibited by telmisartan. GTN-induced decrease in Ser1177, increase in Thr495 phosphorylation or S -glutathionylation of eNOS, and decrease in mitochondrial aldehyde dehydrogenase expression were normalized by telmisartan. Conclusion— These data identify modification of eNOS phosphorylation as an important component of GTN-induced endothelial dysfunction. Via its pleiotropic “antioxidant” properties, telmisartan prevents, at least in part, GTN-induced oxidative stress, nitrate tolerance, and endothelial dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3