Calmodulin Mediates Ca 2+ -Dependent Inhibition of Tie2 Signaling and Acts as a Developmental Brake During Embryonic Angiogenesis

Author:

Yang Chansik1,Ohk Jiyeon1,Lee Ji Yeun1,Kim Eun Jin1,Kim Jiyoon1,Han Sangyeul1,Park Dongeun1,Jung Hosung1,Kim Chungho1

Affiliation:

1. From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.).

Abstract

Objective— Angiogenesis, the process of building complex vascular structures, begins with sprout formation on preexisting blood vessels, followed by extension of the vessels through proliferation and migration of endothelial cells. Based on the potential therapeutic benefits of preventing angiogenesis in pathological conditions, many studies have focused on the mechanisms of its initiation as well as control. However, how the extension of vessels is terminated remains obscure. Thus, we investigated the negative regulation mechanism. Approach and Results— We report that increased intracellular calcium can induce dephosphorylation of the endothelial receptor tyrosine kinase Tie2. The calcium-mediated dephosphorylation was found to be dependent on Tie2–calmodulin interaction. The Tyr1113 residue in the C-terminal end loop of the Tie2 kinase domain was mapped and found to be required for this interaction. Moreover, mutation of this residue into Phe impaired both the Tie2-calmodulin interaction and calcium-mediated Tie2 dephosphorylation. Furthermore, expressing a mutant Tie2 incapable of binding to calmodulin or inhibiting calmodulin function in vivo causes unchecked growth of the vasculature in Xenopus . Specifically, knockdown of Tie2 in Xenopus embryo retarded the sprouting and extension of intersomitic veins. Although human Tie2 expression in the Tie2-deficient animals almost completely rescued the retardation, the Tie2(Y1113F) mutant caused overgrowth of intersomitic veins with strikingly complex and excessive branching patterns. Conclusions— We propose that the calcium/calmodulin-dependent negative regulation of Tie2 can be used as an inhibitory signal for vessel growth and branching to build proper vessel architecture during embryonic development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correction to: Calmodulin Mediates Ca 2+ -Dependent Inhibition of Tie2 Signaling and Acts as a Developmental Brake During Embryonic Angiogenesis;Arteriosclerosis, Thrombosis, and Vascular Biology;2019-09

2. Endothelial Ca2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel;International Journal of Molecular Sciences;2019-08-14

3. Reporting Sex and Sex Differences in Preclinical Studies;Arteriosclerosis, Thrombosis, and Vascular Biology;2018-10

4. Endothelial Ca2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime;International Journal of Molecular Sciences;2018-01-11

5. Ontogeny of Second Messenger Systems;Handbook of Developmental Neurotoxicology;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3