PDK1 Determines Collagen-Dependent Platelet Ca 2+ Signaling and Is Critical to Development of Ischemic Stroke In Vivo

Author:

Münzer Patrick1,Walker-Allgaier Britta1,Geue Sascha1,Geuss Eva1,Hron Gregor1,Rath Dominik1,Eißler Daniela1,Winter Stefan1,Schaeffeler Elke1,Meinert Monika1,Schaller Martin1,Greinacher Andreas1,Schwab Matthias1,Geisler Tobias1,Kleinschnitz Christoph1,Lang Florian1,Gawaz Meinrad1,Borst Oliver1

Affiliation:

1. From the Department of Cardiology and Cardiovascular Medicine (P.M., B.W.-A., S.G., D.R., D.E., T.G., M.G., O.B.), Department of Physiology (B.W.-A., F.L.), Department of Evolutionary Biology of Invertebrates, Institute for Evolution and Ecology (M.M.), Department of Dermatology (M.S.), and Department of Clinical Pharmacology (M.S.), University of Tübingen, Tübingen, Germany; Department of Neurology, University of Würzburg, Würzburg, Germany (E.G., C.K.); Institute for Immunology and Transfusion...

Abstract

Objective— Activation of platelets by subendothelial collagen results in an increase of cytosolic Ca 2+ concentration ([Ca 2+ ] i ) and is followed by platelet activation and thrombus formation that may lead to vascular occlusion. The present study determined the role of phosphoinositide-dependent protein kinase 1 (PDK1) in collagen-dependent platelet Ca 2+ signaling and ischemic stroke in vivo. Approach and Results— Platelet activation with collagen receptor glycoprotein VI agonists collagen-related peptide or convulxin resulted in a significant increase in PDK1 activity independent of second-wave signaling. PDK1 deficiency was associated with reduced platelet phospholipase Cγ2–dependent inositol-1,4,5-trisphosphate production and intracellular [Ca 2+ ] i in response to stimulation with collagen-related peptide or convulxin. The defective increase of [Ca 2+ ] i resulted in a substantial defect in activation-dependent platelet secretion and aggregation on collagen-related peptide stimulation. Furthermore, Rac1 activation and spreading, adhesion to collagen, and thrombus formation under high arterial shear rates were significantly diminished in PDK1-deficient platelets. Mice with PDK1-deficient platelets were protected against arterial thrombotic occlusion after FeCl 3 -induced mesenteric arterioles injury and ischemic stroke in vivo. These mice had significantly reduced brain infarct volumes, with a significantly increased survival of 7 days after transient middle cerebral artery occlusion without increase of intracerebral hemorrhage. Tail bleeding time was prolonged in pdk1 −/− mice, reflecting an important role of PDK1 in primary hemostasis. Conclusions— PDK1 is required for Ca 2+ -dependent platelet activation on stimulation of collagen receptor glycoprotein VI, arterial thrombotic occlusion, and ischemic stroke in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3