Antenatal Dexamethasone Exposure Impairs the High-Conductance Ca 2+ -Activated K + Channels via Epigenetic Alteration at Gene Promoter in Male Offspring

Author:

Xu Ting1,Zhao Meng1,Li Huan1,Zhou Xiuwen1,Liu Bailin1,Sun Miao1,Xu Zhice1,Gao Qinqin1ORCID

Affiliation:

1. First Hospital of Soochow University, Institute for Fetology, Suzhou, China.

Abstract

Objective: Antenatal exposure to glucocorticoids increases cardiovascular risks related to vascular dysfunctions in offspring, although underlying mechanisms are still unknown. As an important vascular mediator, high-conductance Ca 2+ -activated K + channels (BK) plays an essential role in determining vascular tone. Long-term effects of antenatal glucocorticoids on BK in offspring are largely unknown. This study examined the effects and mechanisms of antenatal exposure to clinically relevant doses of glucocorticoids on vascular BK in offspring. Approach and Results: Pregnant Sprague-Dawley rats received synthetic glucocorticoids dexamethasone or vehicle during the last week of pregnancy. Vascular functions, cellular electrophysiology, target gene expression, and promoter methylation were examined in mesenteric arteries of male offspring (gestational day 21 [fetus] and postnatal day 120 [adult offspring]). Antenatal dexamethasone exposure impaired BK activators-mediated relaxation and reduced whole-cell BK currents in mesenteric arteries. Antenatal dexamethasone exposure did not alter Ca 2+ /voltage-sensitivity of BK but downregulated the expressions of BK α and β1 subunits in both fetal and adult mesenteric arteries. In addition, increased promoter methylations within BKα and BKβ1 were compatible with reduced expressions of the 2 genes. Conclusions: Our findings showed a profound and long-term impact of antenatal dexamethasone exposure on vascular BK via an altered epigenetic pattern from fetal stage to adulthood, advancing understanding of prolonged adverse effects and mechanisms of antenatal glucocorticoids exposure on vascular health in offspring.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3