Cellular Landscapes of Nondiseased Human Cardiac Valves From End-Stage Heart Failure–Explanted Heart

Author:

Shu Songren12,Fu Mengxia12,Chen Xiao12,Zhang Ningning1,Zhao Ruojin1,Chang Yuan12,Cui Hao12,Liu Zirui12,Wang Xiaohu1,Hua Xiumeng12,Li Yuan3,Wang Xin13,Wang Xianqiang13,Feng Wei13,Song Jiangping1234

Affiliation:

1. State Key Laboratory of Cardiovascular Disease (S.S., M.F., X.C., N.Z., R.Z., Y.C., H.C., Z.L., Xiaohu Wang, X.H., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

2. The Cardiomyopathy Research Group (S.S., M.F., X.C., Y.C., H.C., Z.L., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

3. Department of Cardiovascular Surgery (Y.L., Xin Wang, Xianqiang Wang, W.F., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

4. Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen‚ China (J.S.).

Abstract

Background: Exploring the mechanisms of valvular heart disease at the cellular level may be useful to identify new therapeutic targets; however, the comprehensive cellular landscape of nondiseased human cardiac valve leaflets remains unclear. Methods: The cellular landscapes of nondiseased human cardiac valve leaflets (5 aortic valves, 5 pulmonary valves, 5 tricuspid valves, and 3 mitral valves) from end-stage heart failure patients undergoing heart transplantation were explored using single-cell RNA sequencing. Bioinformatics was used to identify the cell types, describe the cell functions, and investigate cellular developmental trajectories and interactions. Differences among the 4 types of cardiac valves at the cellular level were summarized. Pathological staining was performed to validate the key findings of single-cell RNA sequencing. An integrative analysis of our single-cell data and published genome-wide association study-based and bulk RNA sequencing-based data provided insights into the cell-specific contributions to calcific aortic valve diseases. Results: Six cell types were identified among 128 412 cells from nondiseased human cardiac valve leaflets. Valvular interstitial cells were the largest population, followed by myeloid cells, lymphocytes, valvular endothelial cells, mast cells, and myofibroblasts. The 4 types of cardiac valve had distinct cellular compositions. The intercellular communication analysis revealed that valvular interstitial cells were at the center of the communication network. The integrative analysis of our single-cell RNA sequencing data revealed key cellular subpopulations involved in the pathogenesis of calcific aortic valve diseases. Conclusions: The cellular landscape differed among the 4 types of nondiseased cardiac valve, which might explain their differences in susceptibility to pathological remodeling and valvular heart disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3