Digital Twins for Predictive, Preventive Personalized, and Participatory Treatment of Immune-Mediated Diseases

Author:

Benson Mikael1ORCID

Affiliation:

1. Medical Digital Twin Research Group, Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.

Abstract

Digital twins are computational models of complex systems, which aim to understand and optimize those systems more effectively than would be possible in real life. Ideally, digital twins can be translated to individual patients, to characterize and computationally treat their diseases with thousands of drugs, to select the drug or drugs that cure the patients. The background problem is that many patients do not respond adequately to drug treatment. This problem reflects a wide gap between the complexity of diseases and clinical practice. Each disease may involve altered interactions between thousands of genes that vary between different cell types in different organs. To our knowledge, these altered interactions have not been characterized on a genome-, cellulome-, and organ-wide scale in any disease. Thus, clinical translation of the digital twin ideal for predictive, preventive, personalized and participatory treatment involves formidable challenges, which are close to the limits of, or beyond today’s technologies. Here, I discuss recent developments and challenges in relation to that ideal focusing on immune-mediated inflammatory diseases, as well as examples from other diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3