Signaling of Serum Amyloid A Through Receptor for Advanced Glycation End Products as a Possible Mechanism for Uremia-Related Atherosclerosis

Author:

Belmokhtar Karim1,Robert Thomas1,Ortillon Jeremy1,Braconnier Antoine1,Vuiblet Vincent1,Boulagnon-Rombi Camille1,Diebold Marie Danièle1,Pietrement Christine1,Schmidt Ann Marie1,Rieu Philippe1,Touré Fatouma1

Affiliation:

1. From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.).

Abstract

Objective— Cardiovascular disease is the leading cause of death in patients with end-stage renal disease. Serum amyloid A (SAA) is an acute phase protein and a binding partner for the multiligand receptor for advanced glycation end products (RAGE). We investigated the role of the interaction between SAA and RAGE in uremia-related atherogenesis. Approach and Results— We used a mouse model of uremic vasculopathy, induced by 5 of 6 nephrectomy in the Apoe −/− background. Sham-operated mice were used as controls. Primary cultures of Ager +/+ and Ager −/− vascular smooth muscle cells (VSMCs) were stimulated with recombinant SAA, S100B, or vehicle alone. Relevance to human disease was assessed with human VSMCs. The surface area of atherosclerotic lesions at the aortic roots was larger in uremic Apoe −/− than in sham-operated Apoe −/− mice ( P <0.001). Furthermore, atherosclerotic lesions displayed intense immunostaining for RAGE and SAA, with a pattern similar to that of α-SMA. Ager transcript levels in the aorta were 6× higher in uremic animals than in controls ( P <0.0001). Serum SAA concentrations were higher in uremic mice, not only after 4 weeks of uremia but also at 8 and 12 weeks of uremia, than in sham-operated animals. We investigated the functional role of RAGE in uremia-induced atherosclerosis further, in animals lacking RAGE. We found that the induction of uremia in Apoe −/− Ager −/− mice did not accelerate atherosclerosis. In vitro, the stimulation of Ager +/+ but not of Ager −/− VSMCs with SAA or S100B significantly induced the production of reactive oxygen species, the phosphorylation of AKT and mitogen-activated protein kinase-extracellular signal-regulated kinases and cell migration. Reactive oxygen species inhibition with N-acetyl cysteine significantly inhibited both the phosphorylation of AKT and the migration of VSMCs. Similar results were obtained for human VSMCs, except that the phosphorylation of mitogen-activated protein kinase-extracellular signal-regulated kinases, rather than of AKT, was subject to specific redox-regulation by SAA and S100B. Furthermore, human aortic atherosclerotic sections were positively stained for RAGE and SAA. Conclusions— Uremia upregulates SAA and RAGE expression in the aortic wall and in atherosclerotic lesions in mice. Ager −/− animals are protected against the uremia-induced acceleration of atherosclerosis. SAA modulates the functions of murine and human VSMCs in vitro in a RAGE-dependent manner. This study, therefore, identifies SAA as a potential new uremic toxin involved in uremia-related atherosclerosis through interaction with RAGE.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3