Affiliation:
1. Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Germany. Department of Cardiology and Angiology I, University Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Germany.
Abstract
The infiltration and accumulation of pro- and anti-inflammatory leukocytes within the intimal layer of the arterial wall is a hallmark of developing and progressing atherosclerosis. While traditionally perceived as macrophage- and foam cell-dominated disease, it is now established that atherosclerosis is a partial autoimmune disease that involves the recognition of peptides from ApoB (apolipoprotein B), the core protein of LDL (low-density lipoprotein) cholesterol particles, by CD4
+
T-helper cells and autoantibodies against LDL and ApoB. Autoimmunity in the atherosclerotic plaque has long been understood as a pathogenic T-helper type-1 driven response with proinflammatory cytokine secretion. Recent developments in high-parametric cell immunophenotyping by mass cytometry, single-cell RNA-sequencing, and in tools exploring antigen-specificity have established the existence of several unforeseen layers of T-cell diversity with mixed T
H
1 and T regulatory cells transcriptional programs and unpredicted fates. These findings suggest that pathogenic ApoB-reactive T cells evolve from atheroprotective and immunosuppressive CD4
+
T regulatory cells that lose their protective properties over time. Here, we discuss T-cell heterogeneity in atherosclerosis with a focus on plasticity, antigen-specificity, exhaustion, maturation, tissue residency, and its potential use in clinical prediction.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献