Smooth Muscle Cell–Specific PKM2 (Pyruvate Kinase Muscle 2) Promotes Smooth Muscle Cell Phenotypic Switching and Neointimal Hyperplasia

Author:

Jain Manish1,Dhanesha Nirav1ORCID,Doddapattar Prakash1ORCID,Nayak Manasa K.1,Guo Liang2,Cornelissen Anne2ORCID,Lentz Steven R.1ORCID,Finn Aloke V.2ORCID,Chauhan Anil K.1ORCID

Affiliation:

1. Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City (M.J., N.D., P.D., M.K.N., S.R.L., A.K.C.).

2. CVPath Institute, Inc, Gaithersburg, MD (L.G., A.C., A.V.F.).

Abstract

Objective: The role of glycolytic enzyme PKM2 (pyruvate kinase muscle 2) in smooth muscle cell (SMC) phenotype switching and neointimal hyperplasia is poorly understood. We determined the role of PKM2 in SMC phenotype switching and neointimal hyperplasia. Approach and Results: We show that PKM2 is expressed in the SMC-rich neointima of the murine carotid artery and peri-strut areas in bare-metal stented human coronary arteries. PDGF-BB (platelet-derived growth factor-BB) stimulation upregulates the expression of PKM2 in cultured murine and human coronary SMC. To provide conclusive evidence for PKM2 in SMC function, we generated SMC-specific PKM2 −/− mutant strain. We report that PKM2 deletion in SMC reduces injury-induced neointimal hyperplasia by inhibiting SMC proliferation and migration, suppressing synthetic phenotype, and reducing aerobic glycolysis associated with decreased ERK (extracellular signal-regulated kinase), mTOR (mammalian target of rapamycin), and STAT3 (signal transducer and activator of transcription 3) signaling. Furthermore, we show that nuclear PKM2 interacts with STAT3 and β-catenin and regulates transcription of MEK5 (mitogen/extracellular signal-regulated kinase kinase-5), cyclin D1, GLUT1 (glucose transporter 1), and LDHA (lactate dehydrogenase A). Treatment of human coronary SMC with ML265, an activator that induces PKM2 tetramerization and blocks its nuclear translocation, inhibited proliferation, migration, and phenotypic switching. Perivascular application of PKM2 activator reduced neointimal hyperplasia in mice. Conclusions: These findings reveal that PKM2 is a key regulator of SMC function in vascular remodeling and implicates PKM2 as a potential target to reduce neointimal hyperplasia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3