Postnatal Deletion of Podoplanin in Lymphatic Endothelium Results in Blood Filling of the Lymphatic System and Impairs Dendritic Cell Migration to Lymph Nodes

Author:

Bianchi Roberta1,Russo Erica1,Bachmann Samia B.1,Proulx Steven T.1,Sesartic Marko1,Smaadahl Nora1,Watson Steve P.1,Buckley Christopher D.1,Halin Cornelia1,Detmar Michael1

Affiliation:

1. From the Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, Switzerland (R.B., E.R., S.B.B., S.T.P., M.S., N.S., C.H., M.D.); Centre for Cardiovascular Sciences, College of Medical and Dental Sciences (S.P.W.) and Rheumatology Research Group, Institute for Biomedical Research, College of Medical and Dental Sciences (C.D.B.), University of Birmingham, United Kingdom.

Abstract

Objective— The lymphatic vascular system exerts major physiological functions in the transport of interstitial fluid from peripheral tissues back to the blood circulation and in the trafficking of immune cells to lymph nodes. Previous studies in global constitutive knockout mice for the lymphatic transmembrane molecule podoplanin reported perinatal lethality and a complex phenotype with lung abnormalities, cardiac defects, lymphedema, blood-filled lymphatic vessels, and lack of lymph node organization, reflecting the importance of podoplanin expression not only by the lymphatic endothelium but also by a variety of nonendothelial cell types. Therefore, we aimed to dissect the specific role of podoplanin expressed by adult lymphatic vessels. Approach and Results— We generated an inducible, lymphatic-specific podoplanin knockout mouse model (Pdpn ΔLEC ) and induced gene deletion postnatally. Pdpn ΔLEC mice were viable, and their lymphatic vessels appeared morphologically normal with unaltered fluid drainage function. Intriguingly, Pdpn ΔLEC mice had blood-filled lymph nodes and vessels, most frequently in the neck and axillary region, and displayed a blood-filled thoracic duct, suggestive of retrograde filling of blood from the blood circulation into the lymphatic system. Histological and fluorescence-activated cell sorter analyses revealed normal lymph node organization with the presence of erythrocytes within lymph node lymphatic vessels but not surrounding high endothelial venules. Moreover, fluorescein isothiocyanate painting experiments revealed reduced dendritic cell migration to lymph nodes in Pdpn ΔLEC mice. Conclusions— These results reveal an important role of podoplanin expressed by lymphatic vessels in preventing postnatal blood filling of the lymphatic vascular system and in contributing to efficient dendritic cell migration to the lymph nodes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference49 articles.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3