Understanding Chylomicron Retention Disease Through Sar1b Gtpase Gene Disruption

Author:

Sané Alain Théophile1,Seidman Ernest1,Peretti Noel1,Kleme Marie Laure1,Delvin Edgard1,Deslandres Colette1,Garofalo Carole1,Spahis Schohraya1,Levy Emile1

Affiliation:

1. From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.).

Abstract

Background— Understanding the specific mechanisms of rare autosomal disorders has greatly expanded insights into the complex processes regulating intestinal fat transport. Sar1B GTPase is one of the critical proteins governing chylomicron secretion by the small intestine, and its mutations lead to chylomicron retention disease, despite the presence of Sar1A paralog. Objective— The central aim of this work is to examine the cause–effect relationship between Sar1B expression and chylomicron output and to determine whether Sar1B is obligatory for normal high-density lipoprotein biogenesis. Approach and Results— The SAR1B gene was totally silenced in Caco-2/15 cells using the zinc finger nuclease technique. SAR1B deletion resulted in significantly decreased secretion of triglycerides (≈40%), apolipoprotein B-48 (≈57%), and chylomicron (≈34.5%). The absence of expected chylomicron production collapse may be because of the compensatory SAR1A elevation observed in our experiments. Therefore, a double knockout of SAR1A and SAR1B was engineered in Caco-2/15 cells, which led to almost complete inhibition of triglycerides, apolipoprotein B-48, and chylomicron output. Further experiments with labeled cholesterol revealed the downregulation of high-density lipoprotein biogenesis in cells deficient in SAR1B or with the double knockout of the 2 SAR1 paralogs. Similarly, there was a fall in the movement of labeled cholesterol from cells to basolateral medium containing apolipoprotein A-I, thereby limiting newly synthesized high-density lipoprotein in genetically modified cells. The decreased cholesterol efflux was associated with impaired expression of ABCA1 (ATP-binding cassette subfamily A member 1). Conclusions— These findings demonstrate that the deletion of the 2 SAR1 isoforms is required to fully eliminate the secretion of chylomicron in vitro. They also underscore the limited high-density lipoprotein production by the intestinal cells in response to SAR1 knockout.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3