Novel Mouse Model for Studying Hemostatic Function of Human Platelets

Author:

Paul David S.12,Bergmeier Wolfgang12

Affiliation:

1. From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.)

2. UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.).

Abstract

Objective: Platelets are critical to the formation of a hemostatic plug and the pathogenesis of atherothrombosis. Preclinical animal models, especially the mouse, provide an important platform to assess the efficacy and safety of antiplatelet drugs. However, these studies are limited by inherent differences between human and mouse platelets and the species-selectivity of many drugs. To circumvent these limitations, we developed a new protocol for the adoptive transfer of human platelets into thrombocytopenic nonobese diabetic/severe combined immune deficiency mice, that is, a model where all endogenous platelets are replaced by human platelets in mice accepting xenogeneic tissues. Approach and Results: To demonstrate the power of this new model, we visualized and quantified hemostatic plug formation and stability by intravital spinning disk confocal microscopy following laser ablation injury to the saphenous vein. Integrin α IIb β 3 -dependent hemostatic platelet plug formation was achieved within ≈30 seconds after laser ablation injury in humanized platelet mice. Pretreatment of mice with standard dual antiplatelet therapy (Aspirin+Ticagrelor) or PAR1 inhibitor, L-003959712 (an analog of vorapaxar), mildly prolonged the bleeding time and significantly reduced platelet adhesion to the site of injury. Consistent with findings from clinical trials, inhibition of PAR1 in combination with dual antiplatelet therapy markedly prolonged bleeding time in humanized platelet mice. Conclusions: We propose that this novel mouse model will provide a robust platform to test and predict the safety and efficacy of experimental antiplatelet drugs and to characterize the hemostatic function of synthetic, stored and patient platelets.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3