Prediction of Venous Thromboembolism in Diverse Populations Using Machine Learning and Structured Electronic Health Records

Author:

Chen Robert123ORCID,Petrazzini Ben Omega134ORCID,Malick Waqas A.5,Rosenson Robert S.5ORCID,Do Ron134ORCID

Affiliation:

1. Charles Bronfman Institute for Personalized Medicine (R.C., B.O.P., R.D.), Icahn School of Medicine at Mount Sinai, New York.

2. Medical Scientist Training Program (R.C.), Icahn School of Medicine at Mount Sinai, New York.

3. Department of Genetics and Genomic Sciences (R.C., B.O.P., R.D.), Icahn School of Medicine at Mount Sinai, New York.

4. Center for Genomic Data Analytics (B.O.P., R.D.), Icahn School of Medicine at Mount Sinai, New York.

5. The Zena and Michael A. Wiener Cardiovascular Institute (W.A.M., R.S.R.), Icahn School of Medicine at Mount Sinai, New York.

Abstract

BACKGROUND: Venous thromboembolism (VTE) is a major cause of morbidity and mortality worldwide. Current risk assessment tools, such as the Caprini and Padua scores and Wells criteria, have limitations in their applicability and accuracy. This study aimed to develop machine learning models using structured electronic health record data to predict diagnosis and 1-year risk of VTE. METHODS: We trained and validated models on data from 159 001 participants in the Mount Sinai Data Warehouse. We then externally tested them on 401 723 participants in the UK Biobank and 123 039 participants in All of Us. All data sets contain populations of diverse ancestries and clinical histories. We used these data sets to develop small, medium, and large models with increasing features on a range of optimizing portability to maximizing performance. We make trained models publicly available in click-and-run format at https://doi.org/10.17632/tkwzysr4y6.6 . RESULTS: In the holdout and external test sets, respectively, models achieved areas under the receiver operating characteristic curve of 0.80 to 0.83 and 0.72 to 0.82 for VTE diagnosis prediction and 0.76 to 0.78 and 0.64 to 0.69 for 1-year risk prediction, significantly outperforming the Padua score. Models also demonstrated robust performance across different VTE types and patient subsets, including ethnicity, age, and surgical and hospitalization status. Models identified both established and novel clinical features contributing to VTE risk, offering valuable insights into its underlying pathophysiology. CONCLUSIONS: Machine learning models using structured electronic health record data can significantly improve VTE diagnosis and 1-year risk prediction in diverse populations. Model probability scores exist on a continuum, affecting mortality risk in both healthy individuals and VTE cases. Integrating these models into electronic health record systems to generate real-time predictions may enhance VTE risk assessment, early detection, and preventative measures, ultimately reducing the morbidity and mortality associated with VTE.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3