Pharmacological Inhibition of Phospholipase D Protects Mice From Occlusive Thrombus Formation and Ischemic Stroke—Brief Report

Author:

Stegner David1,Thielmann Ina1,Kraft Peter1,Frohman Michael A.1,Stoll Guido1,Nieswandt Bernhard1

Affiliation:

1. From the Chair of Vascular Medicine, University Hospital Würzburg, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (D.S., I.T., B.N.); Department of Neurology, University Hospital Würzburg, Würzburg, Germany (D.S., P.K., G.S.); and Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY (M.A.F.).

Abstract

Objective— We recently showed that mice lacking the lipid signaling enzyme phospholipase (PL) D1 or both PLD isoforms (PLD1 and PLD2) were protected from pathological thrombus formation and ischemic stroke, whereas hemostasis was not impaired in these animals. We sought to assess whether pharmacological inhibition of PLD activity affects hemostasis, thrombosis, and thrombo-inflammatory brain infarction in mice. Approach and Results— Treatment of platelets with the reversible, small molecule PLD inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI), led to a specific blockade of PLD activity that was associated with reduced α-granule release and integrin activation. Mice that received FIPI at a dose of 3 mg/kg displayed reduced occlusive thrombus formation upon chemical injury of carotid arteries or mesenterial arterioles. Similarly, FIPI-treated mice had smaller infarct sizes and significantly better motor and neurological function 24 hours after transient middle cerebral artery occlusion. This protective effect was not associated with major intracerebral hemorrhage or prolonged tail bleeding times. Conclusions— These results provide the first evidence that pharmacological PLD inhibition might provide a safe therapeutic strategy to prevent arterial thrombosis and ischemic stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3