Vascular Function During Prolonged Progression and Regression of Atherosclerosis in Mice

Author:

Miller Jordan D.1,Chu Yi1,Castaneda Lauren E.1,Serrano Kristine M.1,Brooks Robert M.1,Heistad Donald D.1

Affiliation:

1. From the Departments of Internal Medicine (J.D.M., Y.C., L.E.C., K.M.S., R.M.B., D.D.H.) and Pharmacology (D.D.H.), University of Iowa Carver College of Medicine, Iowa City, IA.

Abstract

Objective— Endothelial dysfunction is associated with atherosclerosis in mice, but it is difficult to reduce cholesterol levels enough to study regression of atherosclerosis in genetically modified mice. The goal of this study was to examine vascular structure and function before and after reducing elevated plasma lipid levels with a genetic switch in Reversa mice, and identify novel mechanisms contributing to structural and functional improvements in the vasculature after reduction of blood lipids. Methods and Results— After 6 months of hypercholesterolemia, endothelial function (maximum relaxation to acetylcholine) in aorta was impaired and responses to nitric oxide were unaffected. Further impairment in endothelial function was observed after 12 months of hypercholesterolemia and was associated with reductions in sensitivity to nitric oxide. Expression of dihydrofolate reductase was reduced at 6 and 12 months, and addition of the tetrahydrobiopterin precursor sepiapterin significantly improved endothelial function. Reducing cholesterol levels at 6 months normalized dihydrofolate reductase expression and prevented further impairment in endothelial function. Similar functional changes were observed after 12 months of hypercholesterolemia followed by 2 months of lipid lowering. Conclusion— Our data suggest that endothelial dysfunction after prolonged hypercholesterolemia is the result of both impairment of sensitivity to nitric oxide and reduced nitric oxide synthase cofactor bioavailability. Both of these changes can be prevented by normalizing blood lipids during moderately severe or advanced atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3