Novel Pathways of Apolipoprotein A-I Metabolism in High-Density Lipoprotein of Different Sizes in Humans

Author:

Mendivil Carlos O.1,Furtado Jeremy1,Morton Allyson M.1,Wang Liyun1,Sacks Frank M.1

Affiliation:

1. From the School of Medicine, Universidad de los Andes, Bogotá, Colombia (C.O.M.); Section of Endocrinology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia (C.O.M.); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.O.M., J.F., A.M.M., L.W., F.M.S.); and Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (F.M.S.).

Abstract

Objective— A prevailing concept is that high-density lipoprotein (HDL) is secreted into the systemic circulation as a small mainly discoidal particle, which expands progressively and becomes spherical by uptake and esterification of cellular cholesterol and then contracts by cholesterol ester delivery to the liver, a process known as reverse cholesterol transport, thought to be impaired in people with low HDL cholesterol (HDLc). This metabolic framework has not been established in humans. Approach and Results— We studied the metabolism of apolipoprotein A-I in 4 standard HDL sizes by endogenous isotopic labeling in 6 overweight adults with low HDLc and in 6 adults with normal body weight with high plasma HDLc. Contrary to expectation, HDL was secreted into the circulation in its entire size distribution from very small to very large similarly in both groups. Very small (prebeta) HDL comprised only 8% of total apolipoprotein A-I secretion. Each HDL subfraction circulated mostly within its secreted size range for 1 to 4 days and then was cleared. Enlargement of very small and medium to large and very large HDL and generation of very small from medium HDL were minor metabolic pathways. Prebeta HDL was cleared slower, whereas medium, large, and very large HDL were cleared faster in the low HDLc group. Conclusions— A new model is proposed from these results in which HDL is metabolized in plasma mainly within several discrete, stable sizes across the common range of HDLc concentrations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3