Cyclic GMP in Vascular Relaxation

Author:

Krawutschke Christian1,Koesling Doris1,Russwurm Michael1

Affiliation:

1. From the Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany.

Abstract

Objective— In the vascular system, cyclic GMP (cGMP) in smooth muscle cells plays an important role for blood vessel relaxation. Intracellular concentrations of cGMP are thought to be determined by the action of cGMP-generating guanylyl cyclases (sensitive to nitric oxide or natriuretic peptides) and cGMP-degrading phosphodiesterases (PDE1, PDE3, and PDE5). Because functionally relevant cGMP elevations are not accessible to conventional methods, we applied real-time imaging with a fluorescence resonance energy transfer (FRET)-based cGMP indicator to follow nitric oxide– and natriuretic peptide–induced cGMP signals in living smooth muscle cells and analyzed the contribution of the miscellaneous cGMP-generating and cGMP-degrading enzymes. Approach and Results— By comparison of cGMP signals in living smooth muscle cells and vascular relaxation of aortic strips in organ bath experiments, we show for the first time that FRET-based cGMP indicators permit the measurement of functionally relevant cGMP signals. PDE5 was the major cGMP phosphodiesterase responsible for reducing nitric oxide– and natriuretic peptide–induced cGMP signals. In contrast, PDE3—involved in the degradation of lower cGMP concentrations—displayed a preference for natriuretic peptide–stimulated cGMP. Unexpectedly, we found that cGMP is transported out of the cells by the ABC transporter multidrug resistance–associated protein 4 and this export turned out to be of similar importance for intracellular cGMP signals as degradation by PDE5. Functionally, inhibition of cGMP export enhanced vascular relaxation as much as inhibition of PDE5. Conclusions— The findings indicate that cGMP export out of smooth muscle cells is a key player in the regulation of smooth muscle cGMP signals and blood vessel relaxation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3