Na + /Ca 2+ Exchanger

Author:

Unlap M. Tino1,Bates Elizabeth1,Williams Corey1,Komlosi Peter1,Williams Iantha1,Kovacs Gergely1,Siroky Brian1,Bell P. Darwin1

Affiliation:

1. From the Nephrology Research and Training Center, Departments of Medicine and Physiology, Division of Nephrology, University of Alabama at Birmingham.

Abstract

The Na + /Ca 2+ exchanger regulates intracellular calcium ([Ca 2+ ] i ), and attenuation of Na + /Ca 2+ exchange by oxidative stress might lead to dysregulation of [Ca 2+ ] i . We have shown that the Na + /Ca 2+ exchanger differs functionally and at the amino acid level between salt-sensitive and salt-resistant rats. Therefore, the purpose of these studies was to determine how oxidative stress affects the activities of the 2 Na + /Ca 2+ exchangers that we cloned from mesangial cells of salt-resistant (RNCX) and salt-sensitive (SNCX) Dahl/Rapp rats. The effects of oxidative stress on exchanger activity were examined in cells expressing RNCX or SNCX by assessing 45 Ca 2+ uptake (reverse mode) and [Ca 2+ ] i elevation (forward mode) in the presence and absence of H 2 O 2 and peroxynitrite. Our results showed that 45 Ca 2+ uptake in SNCX cells was attenuated at 500 and 750 μmol/L H 2 O 2 (63±12% and 25±7%, respectively; n=16) and at 50 and 100 μmol/L peroxynitrite (47±9% and 22±9%, respectively; n=16). In RNCX cells, 45 Ca 2+ uptake was attenuated at only 750 and 100 μmol/L H 2 O 2 and peroxynitrite (61±9% and 63±6%, respectively; n=16). In addition, the elevation in [Ca 2+ ] i was greater in SNCX cells than in RNCX cells in response to 750 μmol/L H 2 O 2 (58±5.5 vs 17±4.1 nmol/L; n=13) and 100 μmol/L peroxynitrite (33±5 vs 11±6 nmol/L; n=19). The enhanced impairment of SNCX activity by oxidative stress might contribute to the dysregulation of [Ca 2+ ] i that is found in this model of salt-sensitive hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3