Affiliation:
1. From the Departments of Internal Medicine and Physiology, University of Michigan (R.D.L., F.C.B.), Ann Arbor, Mich; and Department of Pharmacology and Toxicology, Michigan State University (C.A.N., S.W.W.), East Lansing, Mich.
Abstract
Phosphatidylinositol 3-kinase (PI3K) activity is increased in aortae from deoxycorticosterone (DOCA)-salt rats and enhanced PI3K activity contributes to the arterial hyperreactivity in these animals. Because PI3K activity is increased in DOCA-salt hypertension, we postulated that phosphorylation of Akt and glycogen synthase kinase 3 (GSK-3), serine threonine kinases that are downstream of PI3K, would be increased in DOCA-salt hypertension. In this study, we focused on GSK-3. Because GSK-3 activity is reduced by phosphorylation, we expected that its activity would be reduced in DOCA-salt hypertensive arteries and that reduced GSK-3 activity could contribute to enhanced adrenergic signaling and vascular smooth muscle hypertrophy that augment the heightened contractile response in DOCA-salt hypertension. Surprisingly, we observed a decrease in phosphorylation of GSK-3, indicating an increase in GSK-3 activity. To determine whether increased GSK-3 activity contributes to altered arterial reactivity in DOCA-salt animals, we measured isometric contraction to norepinephrine (NE) in the presence and absence of PI3K or GSK-3 inhibition. Addition of LY294002 (20 μmol/L), a PI3K inhibitor, resulted in a rightward shift in response to NE and normalized the NE-induced contractions in the DOCA hypertensive vessels. SB415286, a GSK-3 inhibitor, resulted in a slight rightward shift in response to NE in the DOCA-salt vessels. Thus, enhanced GSK-3 activity modestly augments the effects of PI3K but does not appear to contribute greatly to the altered arterial reactivity in DOCA-salt hypertension.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献