Vasopressin Induces Vascular Superoxide Via Endothelin-1 in Mineralocorticoid Hypertension

Author:

Li Lixin1,Galligan James J.1,Fink Gregory D.1,Chen Alex F.1

Affiliation:

1. From the Department of Pharmacology and Toxicology, and the Neuroscience Program, Michigan State University, East Lansing.

Abstract

We have recently reported that endothelin-1 (ET-1), which is increased in the arteries of deoxycorticosterone acetate (DOCA)–salt hypertensive rats, stimulates superoxide production. However, the humoral mechanisms responsible for ET-1–induced superoxide formation in low-renin models of hypertension, such as DOCA-salt hypertension, remain undefined. Vasopressin is known to upregulate vascular preproET-1 gene expression in DOCA-salt rats, an effect that is absent in vasopressin-deficient Brattleboro rats treated with DOCA-salt. The present study tested the hypothesis that vasopressin contributes to ET-1–induced vascular superoxide production in DOCA-salt hypertensive rats. Carotid arterial segments of DOCA, sham (uninephrectomized), or normal (untreated) rats were used for the study. In vitro vasopressin treatment of carotid arteries from normal rats for 24 hours, but not 4 hours, increased both ET-1 and superoxide levels. The increase of vasopressin-induced superoxide was reduced by pretreatment of the vessels with ABT627, a selective ET A receptor antagonist ABT627. Vasopressin, ET-1, and superoxide levels were significant elevated in carotid arteries of DOCA-salt rats compared with sham controls. The selective V1-vasopressin receptor antagonist (β-Mercapto-β, β-cyclopentamethylenepropiony 1 , O-Me-Tyr 2 , Arg 8 vasopressin, ME-AVP), decreased superoxide both in vasopressin-treated vessels of normal rats and in vessels of DOCA-salt rats, with a concomitant reduction of ET-1 content. These results suggest that vasopressin increases vascular superoxide levels by stimulating ET-1 formation in mineralocorticoid hypertension, and that V1-vasopressin receptors play an important role in this process.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3