11β-Hydroxysteroid Dehydrogenase Type 2 in Mouse Aorta

Author:

Christy Clare1,Hadoke Patrick W.F.1,Paterson Janice M.1,Mullins John J.1,Seckl Jonathan R.1,Walker Brian R.1

Affiliation:

1. From the School of Molecular and Clinical Medicine, Endocrinology Unit, University of Edinburgh, Western General Hospital, Edinburgh, UK.

Abstract

Both isozymes of 11β-hydroxysteroid dehydrogenase, which interconvert active and inactive glucocorticoids, are expressed in the mouse aortic wall. Mice deficient in 11HSD type 2 (which converts active corticosterone into inert 11-dehydrocorticosterone) have hypertension and impaired endothelial nitric oxide activity. It has been suggested that 11HSD2 influences vascular function directly by limiting glucocorticoid-mediated inhibition of endothelium-derived nitric oxide. This study sought to determine (1) the cellular distribution of the 11HSD isozymes within the mouse aortic wall and (2) the influence of 11HSD2 on direct glucocorticoid-mediated changes in aortic function. Mouse aortas were separated into their component layers and RNA extracted for RT-PCR. Both types of corticosteroid (mineralocorticoid and glucocorticoid) receptors and both 11HSD isozymes were expressed in the aortic wall. 11HSD1 expression colocalized with α-smooth muscle actin (a marker for smooth muscle cells), whereas 11HSD2 colocalized with TIE-2 (a marker for endothelial cells). Functional relaxation responses of mouse aortic rings were unaltered after exposure to glucocorticoids for 24 hours. In the presence of l -arginine, glucocorticoids produced an endothelium-independent reduction of contraction; similar results were obtained with aortas from mice with genetic inactivation of 11HSD2. Incubation in medium containing l -arginine reversed the endothelial cell dysfunction associated with 11HSD2 inactivation. Thus, 11HSD2 is appropriately sited to modulate endothelial cell function, but endothelial dysfunction in 11HSD2 knockout mice cannot be explained simply by increased access of corticosterone to endothelial cell corticosteroid receptors. Therefore, additional mechanisms, possibly involving indirect effects of enhanced corticosterone action in the kidney and the resultant hypertension, must be involved.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3