Role of Endothelium-Derived Hyperpolarizing Factor in Human Forearm Circulation

Author:

Inokuchi Kosuke1,Hirooka Yoshitaka1,Shimokawa Hiroaki1,Sakai Koji1,Kishi Takuya1,Ito Koji1,Kimura Yoshikuni1,Takeshita Akira1

Affiliation:

1. From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.

Abstract

Endothelium-derived hyperpolarizing factor (EDHF) contributes to endothelium-dependent relaxation of isolated arteries, but it is not known whether this also occurs in the case of humans in vivo. The present study examined the role of EDHF in human forearm circulation. Forearm blood flow (FBF) was measured by strain-gauge plethysmography in 31 healthy, normal subjects (mean±SE age, 23±2 years; 24 men and 7 women). After oral administration of aspirin (486 mg), we infused N G -monomethyl- l -arginine (8 μmol/min for 5 minutes) into the brachial artery. We used tetraethylammonium chloride (TEA, 1 mg/min for 20 minutes), a K Ca channel blocker, as an EDHF inhibitor, and nicorandil as a direct K + channel opener. TEA significantly reduced FBF ( P <0.05) but did not change systemic arterial blood pressure. Furthermore, TEA significantly inhibited the FBF increase in response to substance P (0.8, 1.6, 3.2, and 6.4 ng/min, n=8) and bradykinin (12.5, 25, 50, and 100 ng/min, n=8; both P <0.001), whereas it did not affect the FBF increase in response to acetylcholine (4, 8, 16, and 32 μg/min, n=8), sodium nitroprusside (0.4, 0.8, 1.6, and 3.2 μg/min, n=8), or nicorandil (0.128, 0.256, 0.512, and 1.024 mg/min, n=8). These results suggest that EDHF contributes substantially to basal forearm vascular resistance, as well as to forearm vasodilatation evoked by substance P and bradykinin in humans in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3