Renal Sympathetic Neuroeffector Function in Renovascular and Angiotensin II–Dependent Hypertension in Rabbits

Author:

Burke Sandra L.1,Head Geoffrey A.1,Lambert Gavin W.1,Evans Roger G.1

Affiliation:

1. From the Baker Heart Research Institute (S.L.B., G.A.H., G.W.L.), Melbourne, Australia; and the Department of Physiology (R.G.E.), Monash University, Melbourne, Australia.

Abstract

We tested the hypotheses that the gains of specific renal sympathetic neuroeffector mechanisms are altered in secondary hypertension and that the nature of these alterations depends on the precise experimental setting of the kidney. Rabbits were sham operated, or made comparably hypertensive (mean arterial pressure increased 17% to 24%) by clipping the left or right renal artery or by chronic infusion of angiotensin II (20 to 50 ng kg −1 min −1 SC). Four to 6 weeks later, under pentobarbital anesthesia, the left renal nerves were sectioned and electrically stimulated at low (0 to 2 Hz) and high (4 to 8 Hz) frequencies. Neurally evoked reductions in total renal blood flow, cortical perfusion, urine flow, and sodium excretion and increases in renal norepinephrine spillover were not significantly greater in kidneys of hypertensive rabbits than normotensive controls. Neurally evoked increases in renal renin release and the slope of the relationship between renin release and norepinephrine spillover were less in kidneys of hypertensive rabbits than normotensive controls. Low-frequency renal nerve stimulation reduced medullary perfusion, which was negatively correlated with renal norepinephrine spillover in kidneys from all 3 groups of hypertensive rabbits but not normotensive controls. Two-hertz stimulation reduced medullary perfusion by 19% in hypertensive rabbits but not in normotensive rabbits. Thus, of all of the renal sympathetic neuroeffector mechanisms studied, only neural control of medullary perfusion was enhanced in these models of secondary hypertension. This effect appears to be mediated postjunctionally, not through enhanced neural norepinephrine release, and may contribute to the development and/or maintenance of hypertension in these models.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3