Affiliation:
1. From the Department of Internal Medicine (A.V., R.C., M.F., E.D., C.G., L.A., C.B., S.T., A.S., M.D.T.), Department of Human Morphology and Applied Biology, Section of Histology and General Embryology (N.B., C.S., C.I.), University of Pisa, Pisa, Italy.
Abstract
Angiotensin II induces endothelial dysfunction by reducing NO availability and increasing reactive oxygen species. We assessed whether cyclooxygenase (COX)-1 or COX-2 participate in the angiotensin II–induced endothelial dysfunction in murine mesenteric small arteries and examined the role of reduced nicotinamide-adenine dinucleotide phosphate–dependent reactive oxygen species production. Mice received angiotensin II (600 ng/kg per minute, SC), saline (controls), angiotensin II + apocynin (reduced nicotinamide-adenine dinucleotide phosphate oxidase inhibitor, 2.5 mg/day), or apocynin alone for 2 weeks. Endothelial function of mesenteric arteries was assessed by pressurized myograph. In controls, acetylcholine-induced relaxation was inhibited by
N
G
-monomethyl-
l
-arginine and unaffected by DFU (COX-2 inhibitor), SC-560 (COX-1 inhibitor), or ascorbic acid. In angiotensin II–infused animals, the attenuated response to acetylcholine was less sensitive to
N
G
-monomethyl-
l
-arginine, unaffected by DFU, and enhanced by SC-560 and, similarly, by SQ-29548, a thromboxane–prostanoid receptor antagonist. Moreover, response to acetylcholine was unchanged by ozagrel, a thromboxane synthase inhibitor, and normalized by ascorbic acid. Apocynin prevented the angiotensin II–induced vascular dysfunctions. In angiotensin II–infused mice, RT-PCR analysis showed a significant COX-2 downregulation, whereas COX-1 expression was upregulated. These changes were unaffected by apocynin. Modulation of COX isoform by angiotensin II was also documented by immunohistochemistry. In small mesenteric vessels, the reduced NO availability and oxidant excess, which characterize endothelial dysfunction secondary to angiotensin II, are associated with a reduced COX-2 and an increased COX-1 function and expression. Angiotensin II causes an oxidative stress–independent COX-1 overexpression, whereas angiotensin II–mediated oxidant excess production stimulates COX-1 activity to produce a contracting prostanoid endowed with agonist activity on thromboxane–prostanoid receptors.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献