Angiotensin 1-9 and 1-7 Release in Human Heart

Author:

Jackman Herbert L.1,Massad Malek G.1,Sekosan Marin1,Tan Fulong1,Brovkovych Viktor1,Marcic Branislav M.1,Erdös Ervin G.1

Affiliation:

1. From the Departments of Pharmacology (H.L.J., F.T., V.B., B.M.M., E.G.E.), Surgery (M.G.M.), Pathology (M.S.), and Anesthesiology (F.T., E.G.E.), University of Illinois College of Medicine at Chicago.

Abstract

Human heart tissue enzymes cleave angiotensin (Ang) I to release Ang 1-9, Ang II, or Ang 1-7. In atrial homogenate preparations, cathepsin A (deamidase) is responsible for 65% of the liberated Ang 1-9. Ang 1-7 was released (88% to 100%) by a metallopeptidase, as established with peptidase inhibitors. Ang II was liberated to about equal degrees by ACE and chymase-type enzymes. Cathepsin A’s presence in heart tissue was also proven because it deamidated enkephalinamide substrate by immunoprecipitation of cathepsin A with antiserum to human recombinant enzyme and by immunohistochemistry. In immunohistochemistry, cathepsin A was detected in myocytes of atrial tissue. The products of Ang I cleavage, Ang 1-9 and Ang 1-7, potentiated the effect of an ACE-resistant bradykinin analog and enhanced kinin effect on the B 2 receptor in Chinese hamster ovary cells transfected to express human ACE and B 2 (CHO/AB), and in human pulmonary arterial endothelial cells. Ang 1-9 and 1-7 augmented arachidonic acid and nitric oxide (NO) release by kinin. Direct assay of NO liberation by bradykinin from endothelial cells was potentiated at 10 nmol/L concentration, 2.4-fold (Ang 1-9) and 2.1-fold (Ang 1-7); in higher concentrations, Ang 1-9 was significantly more active than Ang 1-7. Both peptides had traces of activity in the absence of bradykinin. Ang 1-9 and Ang 1-7 potentiated bradykinin action on the B 2 receptor by raising arachidonic acid and NO release at much lower concentrations than their 50% inhibition concentrations (IC 50 s) with ACE. They probably induce conformational changes in the ACE/B 2 receptor complex via interaction with ACE.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3